The dual-actions of melatonin as a potential oncostatic agent and a protector against chemotherapy-induced toxicity

Melatonin against cancer and chemotherapy toxicity

  • Souradipta Chakraborty Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata-700009, India
  • Swaimanti Sarkar Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata-700009, India
  • Aindrila Chattopadhyay Department of Physiology, Vidyasagar College,39, Sankar Ghosh Lane, Kolkata-700006, India
  • Debasish Bandyopadhyay Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata-700009, India
Keywords: Melatonin, cancer, chemotherapy, anticancer drug, oncostatic, toxicity

Abstract

Cancer is one of the most complicated and arduous diseases, causing immense physical and emotional tribulations in the life of patients. Carcinogens can lead to genetic mutations and cancer progression either by directly binding to DNA covalently, forming cross-links, or indirectly via the generation of oxidative stress and/or by other recondite mechanisms. Despite being the most widely used treatment, chemotherapy has several adverse consequences, including acute and/or chronic toxicities. Numerous studies have demonstrated melatonin being a potential anticancer molecule with multiple activities including prevention of the initiation, promotion, and progression of cancer. In addition to its role as a potent antioxidant, melatonin exhibits its cytostatic effects by arresting the mutated cell in the G0/G1 phase, preventing epithelial-to-mesenchymal transition and inciting the immune battle against tumours, possibly by dampening MMP activities. Melatonin inhibits the MAP-K/ERK and p38 pathways and regulates NF-ĸB-mediated inflammatory responses. Melatonin exerts its anti-angiogenic activity by curbing VEGF levels, while its anti-estrogenic activity by inhibiting the cellular uptake of linoleic acid (LA). In addition, melatonin reduces the toxicities of the chemotherapy while improving its effectiveness in cancer treatment. The purpose of this review is to assemble the knowledge available on melatonin’s oncostatic role and its protective effects against chemotherapy-induced toxicities. Further studies are needed to investigate the adjunctive role of melatonin with chemotherapy in the clinical setting and to corroborate its effectiveness in cancer cure.


References

1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I. (2021). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127 (16): 3029-3030. doi:10.1002/cncr.33587.
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin.71 (3): 209–249. doi:10.3322/caac.21660.
3. Danaei G, Vander Hoorn S, Lopez AD, Murray CJ, Ezzati M, Comparative Risk Assessment collaborating group (Cancers) (2005) Causes of cancer in the world: comparative risk assessment of nine behavioural and environmental risk factors. Lancet 366 (9499): 1784–1793. doi:10.1016/S0140-6736(05)67725-2.
4. Najafi M, Cheki M, Rezapoor S, Geraily G, Motevaseli E, Carnovale C, Clementi E, Shirazi A (2018). Metformin: Prevention of genomic instability and cancer: A review. Mutat Res Genet Toxicol. Environ. Mutagen. 827: 1–8. doi:10.1016/j.mrgentox.2018.01.007.
5. Stewart BW, Wild CP (2014) “Cancer etiology”. World Cancer Report 2014. World Health Organization, pp. 81-176. Available online: http://www.searo.who.int/publications/bookstore/documents/9283204298/en/ [Google Scholar].
6. Boffetta P (2000) Molecular epidemiology. J. Intern. Med. 248 (6): 447–454. doi:10.1046/j.1365-2796.2000.00777.x.
7. Boffetta P, Islami F (2013) The contribution of molecular epidemiology to the identification of human carcinogens: current status and future perspectives. Ann. Oncol. 24 (4): 901–908. doi:10.1093/annonc/mds543.
8. Goldar S, Khaniani MS, Derakhshan S M, Baradaran B (2015) Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac. J. Cancer Prev. 16 (6): 2129–2144. doi:10.7314/apjcp.2015.16.6.2129.
9. TorgovnickA, Schumacher B (2015) DNA repair mechanisms in cancer development and therapy. Front. Genet. 6: 157. doi:10.3389/fgene.2015.00157.
10. Basu A K (2018) DNA Damage, Mutagenesis and Cancer. Int. J. Mol. Sci. 19 (4): 970. doi:10.3390/ijms19040970.
11. Vilenchi MM, Knudson AG (2003) Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc. Natl Acad. Sci. USA. 100 (22): 12871–12876. doi:10.1073/pnas.2135498100.
12. Han X, Chen H, Gong H, Tang X, Huang N, Xu W, Tai H, Zhang G, Zhao T, Gong C, Wang S, Yang Y, Xiao H (2020) Autolysosomal degradation of cytosolic chromatin fragments antagonizes oxidative stress-induced senescence. J. Biol. Chem. 295 (14): 4451–4463. doi:10.1074/jbc.RA119.010734.
13. Liu X, Li, Huang Q, Zhang Z, Zhou L, Deng Y, ZhouM, Fleenor DE, Wang H, Kastan M B, Li CY (2017) Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res. 27 (6): 764–783. doi:10.1038/cr.2017.41
14. Raynaud F, Mina M, Tavernari D, Ciriello G (2018) Pan-cancer inference of intra-tumor heterogeneity reveals associations with different forms of genomic instability. PLoS Genet. 14 (9): e1007669. doi:10.1371/journal.pgen.1007669.
15. Talib WH (2018) Melatonin and Cancer Hallmarks. Molecules 23 (3): 518. doi:10.3390/molecules23030518.
16. Dantzer R, Meagher MW, Cleeland CS (2012) Translational approaches to treatment-induced symptoms in cancer patients. Nat. Rev. Clin. Oncol. 9 (7): 414–426. doi:10.1038/nrclinonc.2012.88.
17. Love RR, Leventhal H, Easterling DV, Nerenz DR (1989) Side effects and emotional distress during cancer chemotherapy. Cancer 63 (3): 604–612. doi:10.1002/1097-0142(19890201)63:3<604::aid-cncr2820630334>3.0.co;2-2.
18. Cleeland C, Allen JD, Roberts SA, Brell JM, Giralt SA, Khakoo AY, Kirch RA, Kwitkowski VE, Liao Z, Skillings J (2012) Reducing the toxicity of cancer therapy: recognizing needs, taking action. Nat. Rev. Clin. Oncol. 9 (8): 471–478. doi:10.1038/nrclinonc.2012.99.
19. Pich O, Muiños F, Lolkema MP, Steeghs N, Gonzalez-Perez A, Lopez-Bigas N (2019) The mutational footprints of cancer therapies. Na.t Genet. 51 (12): 1732–1740. doi:10.1038/s41588-019-0525-5.
20. Slominski AT, HardelandR, Zmijewski MA, Slominski RM, Reiter RJ, Paus R (2018) Melatonin: A Cutaneous Perspective on its Production, Metabolism, and Functions. J. Invest. Dermatol. 138 (3): 490–499. doi:10.1016/j.jid.2017.10.025.
21. Arendt J. (2006). Melatonin and human rhythms. Chronobiol. Int. 23 (1-2): 21–37. doi:10.1080/07420520500464361.
22. Reiter RJ (1991) Melatonin: the chemical expression of darkness. Mo.l Cell Endocrinol.79 (1-3): C153–C158. doi:10.1016/0303-7207(91)90087-9.
23. Srinivasan V, Spence DW, Pandi-Perumal SR, TrakhtI,Cardinali D P (2008) Therapeutic actions of melatonin in cancer: possible mechanisms. Integr. Cancer Ther. 7 (3): 189–203.doi:10.1177/1534735408322846.
24. Ma Z, Xu L, Liu D, Zhang X, Di S, Li W, Zhang J, Reiter RJ, Han J, Li X, Yan X (2020) Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing. Oxid Med Cell Longev. 2020: 6841581. doi:10.1155/2020/6841581.
25. Sanchez-Barcelo EJ, Mediavilla MD, Alonso-Gonzalez C, Reiter RJ (2012) Melatonin uses in oncology: breast cancer prevention and reduction of the side effects of chemotherapy and radiation. Expert.OpinInvestig. Drugs 21 (6): 819–831. doi:10.1517/13543784.2012.681045.
26. Blackadar CB (2016) Historical review of the causes of cancer. World J. Clin. Oncol. 7 (1): 54–86.doi:10.5306/wjco.v7.i1.54.
27. Yamagiwa K, Ichikawa K (1977) Experimental study of the pathogenesis of carcinoma. CA Cancer J. Clin. 27 (3): 174–181. doi:10.3322/canjclin.27.3.174.
28. Kiyohara C, Otsu A, Shirakawa T, Fukuda S, Hopkin JM (2002) Genetic polymorphisms and lung cancer susceptibility: a review. Lung Cancer 37 (3): 241–256. doi:10.1016/s0169-5002(02)00107-1.
29. Tsuchiya Y, Sato T, Kiyohara C, Yoshida K, Ogoshi K, Nakamura K, Yamamoto M (2002) Genetic polymorphisms of cytochrome P450 1A1 and risk of gallbladder cancer. J. Exp. Clin. Cancer Res. 21 (1): 119–124. PMID: 12071517.
30. Zhang YJ (2010) Interactions of chemical carcinogens and genetic variation in hepatocellular carcinoma. World J. Hepatol. 2 (3): 94–102. doi:10.4254/wjh.v2.i3.94.
31. Peters JM, Gonzalez FJ (2018) The Evolution of Carcinogenesis. Toxicol. Sci. 165(2): 272–276. doi:10.1093/toxsci/kfy184.
32. Louten J (2016) Viruses and Cancer. Essential Human Virology. Elsevier pp 155-170. doi:10.1016/B978-0-12-800947-5.00009-0.
33. Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier CJ, Rusyn I, DeMarini DM, Caldwell JC, Kavlock RJ, Lambert PF, Hecht SS, Bucher JR, Stewart BW, Baan RA, Cogliano VJ, Straif K (2016) Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ. Health Perspect. 124 (6): 713–721. doi:10.1289/ehp.1509912.
34. Chakarov S, Petkova R, RussevGC, Zhelev N (2014) DNA damage and mutation. Types of DNA damage. BioDiscovery 11: e8957. DOI: 10.7750/BioDiscovery.2014.11.1.
35. Barnes JL, Zubair M, John K, Poirier MC, Martin FL (2018) Carcinogens and DNA damage. Biochem. Soc. Trans 46 (5): 1213–1224. doi:10.1042/BST20180519.
36. Naito A (2010) Nongenotoxic carcinogenesis. Comprehensive Toxicology (3rd edition). Elsevier. pp 35-48. doi: 10.1016/B978-0-08-046884-6.01403-2.
37. Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D (2019) Overview of biological mechanisms of human carcinogens. J. Toxicol. Environ. Health B Crit. Rev. 22 (7-8): 288–359. doi:10.1080/10937404.2019.1643539.
38. Bus JS (2017) IARC use of oxidative stress as key mode of action characteristic for facilitating cancer classification: Glyphosate case example illustrating a lack of robustness in interpretative implementation. Regul. Toxicol. Pharmacol. 86: 157–166. doi:10.1016/j.yrtph.2017.03.004.
39. TroskoJE(2017) Reflections on the use of 10 IARC carcinogenic characteristics for an objective approach to identifying and organizing results from certain mechanistic studies. Toxicol. Res. Appl. 1:239784731771083. doi: 10.1177/2397847317710837.
40. Smith CJ, Perfetti TA, Hayes AW (2021) Categorizing the characteristics of human carcinogens: a need for specificity. Arch.Toxicol. 95: 2883–2889. doi:10.1007/s00204-021-03109-w.
41. Thomas RD (1986). Drinking Water and Health: Volume 6. Washington (DC): National Academies Press (US); 5, Mechanisms of Carcinogenesis. National Research Council (US) Safe Drinking Water Committee. Available from: https://www.ncbi.nlm.nih.gov/books/NBK219109/. DOI: 10.17226/921.
42. Fieser LF (1938) Carcinogenic activity, structure and chemical reactivity of polynuclear hydrocarbons. Am. J. Cancer Res. 34: 37−124. doi: 10.1158/ajc.1938.37.
43. Hill J (1761) Cautions against the immoderate use of snuff: founded on the known qualities of the tobacco plant; and the effects it must produce when this way taken into the body: and enforced by instances of persons who have perished miserably of diseases occasioned or rendered incurable by its use. by dr. j. hill (The 2nd). Printed for R. Baldwin in Pater-noster Row and J. Jackson in St. James's-Street. http://0find.galegroup.com.biblio.eui.eu/ecco/infomark.do?contentSet=ECCOArticles&docType=ECCOArticles&bookId=1329700300&type=getFullCitation&tabID=T001&prodId=ECCO&docLevel=TEXT_GRAPHICS&version=1.0&source=library&userGroupName=europeo.
44. Miller E C, Miller JA (1947) The presence and significance of bound amino azodyes in the livers of rats fed pdimethylaminoazobenzene. Cancer Res. 7: 468−480. Corpus ID: 44390356.
45. MILLER EC (1951) Studies on the formation of protein-bound derivatives of 3,4-benzpyrene in the epidermal fraction of mouse skin. Cancer Res. 11 (2): 100–108. PMID: 14812434.
46. Miller JA (1970) Carcinogenesis by chemicals: an overview--G. H. A. Clowes memorial lecture. Cancer Res. 30 (3): 559–576. PMID: 4915745.
47. Omura T, Sato R (1964) The carbon monoxide-binding pigment of liver microsomes. i. evidence for its hemoprotein nature. J. Biol. Chem. 239: 2370–2378. doi: 10.1016/S0021-9258(20)82244-3.
48. Omiecinski CJ, Vanden Heuvel JP, Perdew GH, Peters JM (2011) Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities. Toxicol. Sci. 120 (Suppl 1): S49–S75. doi:10.1093/toxsci/kfq338.
49. Klaunig JE (2020). Carcinogenesis. An introduction to interdisciplinary toxicology. Academic press. pp 97-110. doi: 10.1016/B978-0-12-813602-7.00008-9.
50. Klaunig JE, Kamendulis LM (2010) Carcinogenicity. Comprehensive Toxicology (Second Edition). Elsevier. pp 117-138. doi: 10.1016/B978-0-08-046884-6.00315-8.
51. Ravanat JL, Douki T (2016) UV and ionizing radiations induced DNA damage, differences and similarities. Radiat. Phys. Chem. 128: 92-102. doi: 10.1016/j.radphyschem.2016.07.007.
52. CohenSM, Arnold LL (2011) Chemical carcinogenesis. Toxicol. Sci. 120 (Suppl 1): S76–S92. doi:10.1093/toxsci/kfq365.
53. Hebels DG, Briedé JJ, Khampang R, Kleinjans JC, de Kok TM (2010) Radical mechanisms in nitrosamine- and nitrosamide-induced whole-genome gene expression modulations in Caco-2 cells. Toxicol. Sci. 116 (1): 194–205. doi:10.1093/toxsci/kfq121.
54. Kondo N, Takahashi A, Ono K, Ohnishi T (2010) DNA damage induced by alkylating agents and repair pathways. J. Nucleic Acids 2010: 543531. doi:10.4061/2010/543531.
55. Wohak LE, Krais AM, Kucab JE, Stertmann J, Øvrebø S, Seidel A, Phillips DH, Arlt VM (2016) Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch.Toxicol. 90 (2): 291–304. doi:10.1007/s00204-014-1409-1.
56. Sridhar J, Goyal N, Liu J, Foroozesh M (2017) Review of ligand specificity factors for CYP1A subfamily enzymes from molecular modeling studies reported to-date. Molecules 22 (7): 1143. doi:10.3390/molecules22071143.
57. Guengerich FP (2000) Metabolism of chemical carcinogens. Carcinogenesis 21 (3): 345-351. doi:10.1093/carcin/21.3.345.
58. Conney AH (1982) Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Res. 42(12): 4875–4917. doi: 0008-5472/82/0042-OOOO.
59. Miller EC, Miller JA (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47 (10): 2327–2345. doi:10.1002/1097-0142(19810515)47:10<2327::aid-cncr2820471003>3.0.co;2-z.
60. Melnick RL, Kohn MC, Portier CJ (1996) Implications for risk assessment of suggested nongenotoxic mechanisms of chemical carcinogenesis. Environ. Health Perspect 104 (Suppl 1): 123–134. doi:10.1289/ehp.96104s1123.
61. Williams GM (2001) Mechanisms of chemical carcinogenesis and application to human cancer risk assessment. Toxicology 166 (1-2): 3–10. doi:10.1016/s0300-483x(01)00442-5.
62. Hernández LG, van Steeg H, Luijten M, van Benthem J (2009) Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat. Res. 682 (2-3): 94–109. doi:10.1016/j.mrrev.2009.07.002.
63. Tao L, Wang X, Zhou Q (2020) Long noncoding RNA SNHG16 promotes the tumorigenicity of cervical cancer cells by recruiting transcriptional factor SPI1 to upregulate PARP9. Cell Biol. Int. 44 (3): 773–784. doi:10.1002/cbin.11272.
64. Nenclares P, Harrington KJ (2020) The biology of cancer. Medicine 48 (2): 67-72. doi: 10.1016/j.mpmed.2019.11.001.
65. Capen CC, DayanAD, Green S (1995) Receptor-mediated mechanisms in carcinogenesis: an overview. Mutat. Res. 333 (1-2):215-224. doi:10.1016/0027-5107(95)00148-4.
66. McClain MR(1993) Mechanistic considerations for the relevance of animal data on thyroid neoplasia to human risk assessment. Mutat. Res. 333 (1-2): 131-142. doi:10.1016/0027-5107(95)00139-5.
67. Meegan MJ, O'Boyle NM (2019) Special Issue "Anticancer Drugs". Pharmaceuticals (Basel)12 (3): 134. doi:10.3390/ph12030134.
68. Sikes RA (2007) Chemistry and pharmacology of anticancer drugs. Br. J. Cancer 97 (12): 1713. doi: 10.1038/sj.bjc.6604075.
69. Shewach DS, Kuchta RD (2009) Introduction to cancer chemotherapeutics. Chem. Rev. 109 (7): 2859–2861. doi:10.1021/cr900208x.
70. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S (2011) Analysis of anticancer drugs: a review. Talanta 85 (5): 2265–2289. doi:10.1016/j.talanta.2011.08.034.
71. Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. (2015) Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer cell 28 (6): 690–714. doi:10.1016/j.ccell.2015.10.012.
72. Thurston DE (2006) “Chemistry and Pharmacology of Anticancer Drugs”. CRC Press. Oxford. doi: 10.1201/9781420008906.
73. Amjad MT, Chidharla A, Kasi A (2022) Cancer Chemotherapy. In: StatPearls. Treasure Island (FL): StatPearls Publishing. PMID: 33232037.
74. Smith IE, Evans BD (1985) Carboplatin (JM8) as a single agent and in combination in the treatment of small cell lung cancer. Cancer Treat. Rev. 12 (Suppl A): 73–75. doi:10.1016/0305-7372(85)90021-0.
75. Extra JM, Espie M, Calvo F, Ferme C, Mignot L, Marty M (1990) Phase I study of oxaliplatin in patients with advanced cancer. Cancer Chemother. Pharmacol. 25 (4): 299–303. doi:10.1007/BF00684890.
76. Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222 (5191): 385–386. doi:10.1038/222385a0.
77. Garbutcheon-Singh KB, Leverett P, Myers S, Aldrich-Wrigh JR (2013) Cytotoxic platinum(II) intercalators that incorporate 1R,2Rdiaminocyclopentane. Dalton Trans 42: 918-926. doi:10.1039/c2dt31323e.
78. Lowenthal RM, Eaton K (1996) Toxicity of chemotherapy. Hematol. Oncol. Clin. North Am. 10 (4): 967–990. doi:10.1016/s0889-8588(05)70378-6.
79. Redmond KM, Wilson TR, Johnston PG, Longley DB (2008) Resistance mechanisms to cancer chemotherapy. Front. Biosci. 13: 5138–5154. doi:10.2741/3070.
80. Remesh A (2017) Toxicities of anticancer drugs and its management. Int. J. Basic Clin. Pharmacol. 1 (1): 2-12 .doi: 10.5455/2319-2003.ijbcp000812.
81. George M. Brenner, Craig W. Stevens. (2010). Antineoplastic drugs, Text book of Pharmacology. Saunders Elsevier. 493-511. Paperback ISBN: 9780323391665.
82. Hoagland HC (1982) Hematologic complications of cancer chemotherapy. Semin. Oncol. 9 (1): 95–102. doi: 10.5555/URI:PII:0093775482900112.
83. Gupta S, Tannous R, Friedman M (2001) Incidence of anaemia in CHOP-treated intermediate- grade nonHodgkin’s lymphoma (IGNHL). Eur. J. Cancer. 37: S94:339.10.1016/S0959-8049(01)80831-5.
84. Liu M, Tan H, Zhang X, Liu Z, Cheng Y, Wang D, Wang F (2014) Hematopoietic effects and mechanisms of Fufang e׳jiao jiang on radiotherapy and chemotherapy-induced myelosuppressed mice. J. Ethnopharmacol. 152 (3): 575–584. doi:10.1016/j.jep.2014.02.012.
85. Cardinale D, Ciceri F, Latini R (2018) Anthracycline-induced cardiotoxicity: A multicenter randomised trial comparing two strategies for guiding prevention with enalapril: The International CardioOncology Society-one trial. Eur. J. Cancer 94: 126-137. doi:10.1016/j.ejca.2018.02.005.
86. Adão R, de Keulenaer G, Leite-Moreira A, &Brás-Silva (2013). Cardiotoxicity associated with cancer therapy: pathophysiology and prevention strategies. Rev. Port. Cardiol. 32 (5): 395–409. doi:10.1016/j.repc.2012.11.002.
87. Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, Cipolla CM (2016) Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA. Cancer J. Clin. 66 (4): 309–325. doi:10.3322/caac.21341.
88. Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC (1991) Cardiac disturbances during the administration of taxol. J. Clin. Oncol. 9 (9): 1704–1712. doi:10.1200/JCO.1991.9.9.1704.
89. Al-Majed AA, Sayed-Ahmed MM, Al-Yahya AA, Aleisa AM, Al-Rejaie SS, Al-Shabanah OA (2006) Propionyl-L-carnitine prevents the progression of cisplatin-induced cardiomyopathy in a carnitine-depleted rat model. Pharmacol. Res. 53 (3): 278–286. doi:10.1016/j.phrs.2005.12.005.
90. Lee CS, Ryan, EJ, Doherty GA (2014) Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: the role of inflammation. World J. Gastroenterol. 20 (14): 3751–3761. doi:10.3748/wjg.v20.i14.3751.
91. Xue H, Sawyer MB, WischmeyerPE,Baracos VE (2011) Nutrition modulation of gastrointestinal toxicity related to cancer chemotherapy: from preclinical findings to clinical strategy. PEN J. Parenter Enteral. Nutr. 35 (1): 74–90. doi:10.1177/0148607110377338.
92. Benson AB 3rd, Ajani JA, Catalano RB, Engelking C, Kornblau SM, Martenson JA, Jr McCallum R, Mitchell E, O'Dorisio TM, Vokes EE,Wadler S (2004) Recommended guidelines for the treatment of cancer treatment-induced diarrhea. J. Clin. Oncol. 22 (14): 2918–2926. doi:10.1200/JCO.2004.04.132.
93. Denlinger CS, Barsevick AM (2009) The challenges of colorectal cancer survivorship. J. Natl. Compr. Canc. Netw. 7 (8): 883–894. doi:10.6004/jnccn.2009.0058.
94. PetersonDE, Boers-Doets CB, Bensadoun RJ, Herrstedt J, ESMO Guidelines Committee (2015) Management of oral and gastrointestinal mucosal injury: ESMO Clinical Practice Guidelines for diagnosis, treatment, and follow-up. Ann. Oncol. 26 (Suppl 5): v139–v151. doi:10.1093/annonc/mdv202.
95. Sonis ST, Elting LS, Keefe D, Peterson DE, Schubert M, Hauer-Jensen M, Bekele BN, Raber-Durlacher J, Donnelly JP, Rubenstein EB, Mucositis Study Section of the Multinational Association for Supportive Care in Cancer, & International Society for Oral Oncology (2004). Perspectives on cancer therapy-induced mucosal injury: pathogenesis, measurement, epidemiology, and consequences for patients. Cancer 100 (9 Suppl): 1995–2025. doi:10.1002/cncr.20162.
96. Duncan M, Grant G (2003) Oral and intestinal mucositis - causes and possible treatments. Aliment Pharmacol. Ther. 18 (9): 853–874. doi:10.1046/j.1365-2036.2003.01784.x.
97. McQuade RM, Al Thaalibi M, Nurgali K (2020). Impact of chemotherapy-induced enteric nervous system toxicity on gastrointestinal mucositis. Curr. Opin. Support Palliat. Care 14 (3): 293–300. doi:10.1097/SPC.0000000000000515.
98. Blijham GH (1993) Prevention and treatment of organ toxicity during high-dose chemotherapy: an overview. Anticancer Drugs 4 (5):527-533. doi:10.1097/00001813-199310000-00001.
99. Han Y, Smith MT (2013) Pathobiology of cancer chemotherapy-induced peripheral neuropathy (CIPN). Front. Pharmacol. 4: 156. doi:10.3389/fphar.2013.00156.
100. Dietrich J (2020) Neurotoxicity of cancer therapies.Continuum (Minneap Minn).26 (6): 1646–1672. doi:10.1212/CON.0000000000000943.
101. Bompaire F, Durand T, Léger-Hardy I, Psimaras D, Ricard D (2017) Chemotherapy-related cognitive impairment or « chemobrain »: concept and state of art. Troubles cognitifschimio-induitsou « chemobrain»: concept et état de l’art. Geriatr Psychol.NeuropsychiatrVieil 15 (1): 89–98. doi:10.1684/pnv.2017.0659.
102. Branca JJV, Morucci G, Pacini A (2018) Cadmium-induced neurotoxicity: still much ado. Neural Regen. Res. 13 (11): 1879–1882. doi:10.4103/1673-5374.239434.
103. Basak D, Arrighi S, Darwiche Y, Deb S (2021) Comparison of anticancer drug toxicities: paradigm shift in adverse effect profile. Life (Basel) 12 (1): 48. doi:10.3390/life12010048.
104. Townsend DM, Deng M, Zhang L, Lapus MG, Hanigan MH (2003) Metabolism of Cisplatin to a nephrotoxin in proximal tubule cells. J. Am. Soc. Nephrol. 14 (1): 1–10. doi:10.1097/01.asn.0000042803.28024.92.
105. Sahni V, Choudhury D Ahmed,Z. (2009) Chemotherapy-associated renal dysfunction. Nat. Rev. Nephrol. 5 (8): 450–462. doi:10.1038/nrneph.2009.97.
106. Mudd TW, Guddati A. (2021) Management of hepatotoxicity of chemotherapy and targeted agents. Am. J. Cancer Res. 11 (7): 3461–3474. PMID: 34354855 PMCID: PMC8332851.
107. Han JM, Yee J, Cho S, Gwak HS (2020) Factors influencing imatinib-induced hepatotoxicity. Cancer Res. Treat. 52 (1): 181–188. doi:10.4143/crt.2019.131.
108. LERNER AB, CASE JD, TAKAHASHI Y (1960) Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal glands. J. Biol. Chem. 235: 1992–1997. doi: 10.1016/s0021-9258(18)69351-2.
109. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C (2017) Melatonin: Pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol. 15 (3): 434–443. doi:10.2174/1570159X14666161228122115.
110. Favero G, Moretti,E, Bonomini F, Reiter RJ, Rodella LF, Rezzani R. (2018) Promising antineoplastic actions of melatonin. Front. Pharmacol. 9: 1086. doi:10.3389/fphar.2018.01086.
111. Reppert SM, Godson C, Mahle CD, Weaver DR, Slaugenhaupt SA, Gusella JF (1995) Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel1b melatonin receptor. Proc. Natl. Acad. Sci. USA. 92 (19): 8734–8738. doi:10.1073/pnas.92.19.8734.
112. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT (2012) Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol. Cell Endocrinol. 351 (2): 152–166. doi:10.1016/j.mce.2012.01.004.
113. Reiter RJ, Tan DX, Galano A (2014) Melatonin: exceeding expectations. Physiology (Bethesda) 29 (5): 325–333. doi:10.1152/physiol.00011.2014.
114. Dubocovich ML, Markowska M (2005) Functional MT1 and MT2 melatonin receptors in mammals. Endocrine 27 (2): 101–110. doi:10.1385/ENDO:27:2:101.
115. Reiter RJ, Mayo J, Tan, X., Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61 (3): 253–278. doi:10.1111/jpi.12360.
116. Bonmati-Carrion MA, Tomas-Loba A (2021) Melatonin and cancer: A polyhedral network where the source matters.Antioxidants (Basel). 10 (2): 210. doi:10.3390/antiox10020210.
117. Halladin N, Busch, SE, Jensen SE, Hansen HS, Zaremba T, Aarøe J, Rosenberg ,&Gögenur I (2014) Intracoronary and systemic melatonin to patients with acute myocardial infarction: protocol for the IMPACT trial. Dan. Med. J. 61 (2): A4773. doi: 10.1007/s00380-014-0589-1.
118. Karbownik M, Lewinski A, Reiter RJ (2001) Anticarcinogenic actions of melatonin which involve antioxidative processes: comparison with other antioxidants. Int. J. Biochem. Cell Biol. 33 (8): 735–753. doi:10.1016/s1357-2725(01)00059-0.
119. Galano A, Tan DX, Reiter RJ (2018) Melatonin: A Versatile Protector against Oxidative DNA Damage. Molecules 23 (3): 530. doi:10.3390/molecules23030530.
120. Guo Y, Su J., Li T, Zhang Q, Bu, Wang Q, Lai D (2017) Melatonin ameliorates restraint stress-induced oxidative stress and apoptosis in testicular cells via NF-κB/iNOS and Nrf2/ HO-1 signaling pathway. Sci. Rep. 7 (1): 9599. doi:10.1038/s41598-017-09943-2.
121. Zhang HM, Zhang (2014). Melatonin: a well-documented antioxidant with conditional pro-oxidant actions. J. Pineal Res. 57 (2): 131–146. doi:10.1111/jpi.12162.
122. Proietti , Cucina, A, Reiter RJ, Bizzarri M (2013) Molecular mechanisms of melatonin's inhibitory actions on breast cancers. Cell. Mol. Life Sci. 70 (12): 2139–2157. doi:10.1007/s00018-012-1161-8.
123. Cos S, Recio J Sánchez-Barceló EJ (1996). Modulation of the length of the cell cycle time of MCF-7 human breast cancer cells by melatonin. Life Sci. 58 (9): 811–816. doi:10.1016/0024-3205(95)02359-3.
124. Nooshinfar E, Bashash D, Safaroghli-Azar A, Bayati S, Rezaei-Tavirani M, Ghaffari S H, Akbari ME (2016) Melatonin promotes ATO-induced apoptosis in MCF-7 cells: Proposing novel therapeutic potential for breast cancer. Biomed. Pharmacother. 83: 456–465. doi:10.1016/j.biopha.2016.07.004.
125. Shen CJ, Chang CC, Chen YT, Lai CS, Hsu YC (2016). Melatonin suppresses the growth of ovarian cancer cell lines (OVCAR-429 and PA-1) and potentiates the effect of g1 arrest by targeting CDKs. Int. J. Mol. Sci. 17 (2): 176. doi:10.3390/ijms17020176.
126. Gonçalves NdoN, Colombo J, Lopes JR, Gelaleti GB, Moschetta MG, Sonehara NM, Hellmén E, ZanonCdeF, Oliani SM, Zuccari DA (2016) Effect of melatonin in epithelial mesenchymal transition markers and invasive properties of breast cancer stem cells of canine and human cell lines. PloS one 11 (3): e0150407. doi:10.1371/journal.pone.0150407.
127. Mao L, SummersW, Xiang S, Yuan L, Dauchy RT, Reynolds A, Wren-Dail MA, Pointer D, Frasch T, Blask DE, Hill SM (2016) Melatonin represses metastasis in her2-postive human breast cancer cells by suppressing RSK2 expression. Mol. Cancer Res. 14 (11): 1159–1169. doi:10.1158/1541-7786.MCR-16-0158.
128. Spigel DR, Burstein HJ (2002) HER2 overexpressing metastatic breast cancer. Curr. Treat. Options Oncol. 3 (2): 163–174. doi:10.1007/s11864-002-0062-8.
129. Mao L, Yuan L, Slakey LM, Jones FE, Burow ME, Hill SM (2010). Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res. 12 (6): R107. doi:10.1186/bcr2794.
130. Seely D, Wu P, Frit H., Kennedy DA, Tsui T, Seely AJ, Mills E (2012) Melatonin as adjuvant cancer care with and without chemotherapy: a systematic review and meta-analysis of randomized trials. Integr. Cancer Ther. 11 (4): 293–303. doi:10.1177/1534735411425484.
131. Chovancova B, Hudecova S, Lencesova L, Babula P, Rezuchova I, Penesova A, Grman M, MoravcikR, Zeman M, Krizanova O (2017) Melatonin-induced changes in cytosolic calcium might be responsible for apoptosis induction in tumour cells. Cell Physiol. Biochem. 44 (2): 763–777. doi:10.1159/000485290.
132. Fulda S (2018 Therapeutic opportunities based on caspase modulation. Semin. Cell Dev. Biol.82: 150–157. doi:10.1016/j.semcdb.2017.12.008.
133. Chuffa LGA, Reiter R, Lupi LA (2017) Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis 38 (10): 945–952. doi:10.1093/carcin/bgx054.
134. Nishida N, Yano H, Nishida T, Kamura T, Kojir M (2006). Angiogenesis in cancer. Vasc. Health Risk Manag. 2 (3): 213–219. doi:10.2147/vhrm.2006.2.3.213.
135. HicklinDJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23 (5): 1011–1027. doi:10.1200/JCO.2005.06.081.
136. Pradeep CR, Sunila ES, Kuttan G (2005) Expression of vascular endothelial growth factor (VEGF) and VEGF receptors in tumor angiogenesis and malignancies. Integr. Cancer Ther. 4 (4): 315–321. doi:10.1177/1534735405282557.
137. Shinkaruk S, Bayle M, Lain, Deleris G (2003) Vascular endothelial cell growth factor (VEGF), an emerging target for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents 3 (2): 95–117. doi:10.2174/1568011033353452.
138. Moreira IS, Fernandes PA, Ramos MJ (2007) Vascular endothelial growth factor (VEGF) inhibition--a critical review. Anticancer Agents Med. Chem. 7 (2): 223–245.doi:10.2174/187152007780058687.
139. Colombo J, Maciel JM, Ferreira LC, Silva RFDA, Zuccari DA (2016) Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells. Oncol. Lett. 12 (1): 231–237. doi:10.3892/ol.2016.4605.
140. Park JW, Hwang MS, Suh SI, Baek WK (2009) Melatonin down-regulates HIF-1 alpha expression through inhibition of protein translation in prostate cancer cells. J. Pineal Res. 46 (4): 415–421. doi:10.1111/j.1600-079X.2009.00678.x.
141. Soybir G, Topuzlu C, Odabaş O, Dolay K, Bili A, Kökso F (2003) The effects of melatonin on angiogenesis and wound healing. Surg. Today 33 (12): 896–901. doi:10.1007/s00595-003-2621-3.
142. Labrecque N, Cermakian N (2015) Circadian clocks in the immune system. J. Biol. Rhythms. 30 (4): 277–290. doi:10.1177/0748730415577723.
143. Ozkanlar , Kara A, Sengul E, Simsek N, Karadeniz A, Kurt N (2016) Melatonin modulates the immune system response and inflammation in diabetic rats experimentally-induced by alloxan. Horm. Metab. Res. 48 (2): 137–144. doi:10.1055/s-0035-1548937.
144. Vinther AG, Claesson MH (2015) The influence of melatonin on immune system and cancer. Int. J. Cancer Clin. Res. 2: 024. doi: 10.23937/2378-3419/2/4/1024.
145. Ren W, Liu G, Chen S, Yin J, Wang J, Tan B, Wu G, Bazer FW, PengY, Li T, Reiter RJ. Yin Y (2017) Melatonin signaling in T cells: Functions and applications. J. Pineal Res. 62 (3): 10.1111/jpi.12394. doi:10.1111/jpi.12394.
146. Carpentieri AR, Peralta Lopez ME, Aguilar J, Solá VM (2017) Melatonin and periodontal tissues: Molecular and clinical perspectives. Pharmacol. Res. 125 (Pt B): 224–231. doi:10.1016/j.phrs.2017.09.003.
147. Singh M, Jadhav HR (2014) Melatonin: functions and ligands. Drug Discov. Today 19 (9): 1410–1418. doi:10.1016/j.drudis.2014.04.014.
148. Carrillo-Vico A, Lardone P, Alvarez-Sánchez N, Rodríguez-Rodríguez A, Guerrero JM (2013) Melatonin: buffering the immune system. Int. J. Mol. Sci. 14 (4): 8638–8683. doi:10.3390/ijms14048638.
149. García-Mauriño S, Pozo D, Carrillo-Vico A, Calvo JR, Guerrero JM (1999) Melatonin activates Th1 lymphocytes by increasing IL-12 production. Life Sci. 65 (20): 2143–2150. doi:10.1016/s0024-3205(99)00479-8.
150. Miller SC, Pandi-Perumal SR, Esquifino AI, Cardinali DP, Maestroni GJ (2006) The role of melatonin in immuno-enhancement: potential application in cancer. Int. J. Exp. Pathol. 87 (2): 81–87. doi:10.1111/j.0959-9673.2006.00474.x.
151. Liu H, Xu L, We JE, Xie MR, Wang SE, Zhou RX (2011) Role of CD4+ CD25+ regulatory T cells in melatonin-mediated inhibition of murine gastric cancer cell growth in vivo and in vitro. Anat. Rec. (Hoboken) 294 (5): 781–788. doi:10.1002/ar.21361.
152. Bouris P, Skandalis SS, Piperigko Z, Afratis N, Karamanou K, Aletras AJ, Moustakas A, Theocharis AD, Karamanos NK (2015) Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix. Biol. 43: 42–60. doi:10.1016/j.matbio.2015.02.008.
153. Huang B, Warner M, Gustafsson JA (2015) Estrogen receptors in breast carcinogenesis and endocrine therapy. Mol. Cell Endocrinol. 418 (Pt 3): 240-244. doi:10.1016/j.mce.2014.11.015.
154. Santen RJ, Yue W, Wang JP (2015) Estrogen metabolites and breast cancer. Steroids 99 (Pt A): 61–66. doi:10.1016/j.steroids.2014.08.003.
155. Soysal SD, Kilic IB, Regenbrecht CR, Schneider S, Muenst S, Kilic N, Güth U, Dietel M, Terracciano LM,Kilic E (2015) Status of estrogen receptor 1 (ESR1) gene in mastopathy predicts subsequent development of breast cancer. Breast Cancer Res. Treat. 151 (3): 709–715. doi:10.1007/s10549-015-3427-y.
156. Lopes J, Arnosti D, Trosko JE, Tai MH, Zuccari D (2016) Melatonin decreases estrogen receptor binding to estrogen response elements sites on the OCT4 gene in human breast cancer stem cells. Genes Cancer 7 (5-6): 209–217. doi:10.18632/genesandcancer.107.
157. Sánchez-Barceló EJ, Cos S, Mediavilla D, Martínez-Campa C, González A, Alonso-González C (2005) Melatonin-estrogen interactions in breast cancer. J. Pineal Res. 38 (4): 217–222. doi:10.1111/j.1600-079X.2004.00207.x.
158. Hill S M, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask D (2015) Melatonin: an inhibitor of breast cancer. Endocr. Relat. Cancer 22 (3): R183–R204. doi:10.1530/ERC-15-0030.
159. Monayo SM, Liu X (2022) The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front. Pharmacol. 13: 867500. doi:10.3389/fphar.2022.867500.
160. Saha S, Buttari B, Panieri E, Profumo E, &Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25 (22): 5474. doi:10.3390/molecules25225474.
161. Yi C, Zhang Y, Yu Z, Xiao Y, Wang J, Qiu H, Yu W, Tang R, Yuan Y, Guo W, Deng W (2014) Melatonin enhances the anti-tumor effect of fisetin by inhibiting COX-2/iNOS and NF-κB/p300 signaling pathways. PloS one 9 (7): e99943. doi:10.1371/journal.pone.0099943.
162. Shrestha S, Zhu J, Wang Q, Du X, Liu F, Jiang J, Song J, Xing J, Sun D, Hou Q, Peng Y, Zhao J, Sun X, Song X (2017) Melatonin potentiates the antitumor effect of curcumin by inhibiting IKKβ/NF-κB/COX-2 signaling pathway. Int. J. Oncol. 51 (4): 1249–1260. doi:10.3892/ijo.2017.4097.
163. Qin W, Lu W, Li H, Yuan X, Li B, Zhang Q, Xiu R (2012) Melatonin inhibits IL1β-induced MMP9 expression and activity in human umbilical vein endothelial cells by suppressing NF-κB activation. J. Endocrinol. 214 (2): 145–153. doi:10.1530/JOE-12-0147.
164. Lissoni P, Tancini G, Barni S, Paolorossi F, Ardizzoia A, Conti A, Maestroni G (1997) Treatment of cancer chemotherapy-induced toxicity with the pineal hormone melatonin. Support Care Cancer 5 (2): 126–129. doi:10.1007/BF01262569.
165. Regelson W, Pierpaoli W (1987) Melatonin: a rediscovered antitumor hormone? Its relation to surface receptors; sex steroid metabolism, immunologic response, and chronobiologic factors in tumor growth and therapy. Cancer Invest. 5 (4): 379–385. doi: 10.1080/07357908709170112.
166. Bilginoğlu A, Aydın D, Ozsoy S, Aygün H (2014) Protective effect of melatonin on adriamycin-induced cardiotoxicity in rats. Turk Kardiyol Dern Ars. 42 (3): 265–273. doi:10.5543/tkda.2014.36089.
167. Dziegiel P, Surowiak P, Rabczyński J, Zabel M (2002) Effect of melatonin on cytotoxic effects of daunorubicin on myocardium and on transplantable Morris hepatoma in rats. Pol. J. Pathol. 53 (4): 201–204. PMID: 12597337.
168. Guven A, Yavuz O, Cam M, Ercan F, Bukan N, Comunoglu C (2007) Melatonin protects against epirubicin-induced cardiotoxicity. Acta Histochem. 109 (1): 52-60. doi:10.1016/j.acthis.2006.09.007.
169. Bennukul K, Numkliang S, Leardkamolkarn V (2014) Melatonin attenuates cisplatin-induced HepG2 cell death via the regulation of mTOR and ERCC1 expressions. World J. Hepatol. 6 (4): 230–242. doi:10.4254/wjh.v6.i4.230.
170. Areti A, Komirishetty P, Akuthota M, Malik RA, Kumar A (2017) Melatonin prevents mitochondrial dysfunction and promotes neuroprotection by inducing autophagy during oxaliplatin-evoked peripheral neuropathy. J. Pineal Res. 62 (3): 10.1111/jpi.12393. doi:10.1111/jpi.12393.
171. Waseem M, Tabassum H, Parvez S (2016) Neuroprotective effects of melatonin as evidenced by abrogation of oxaliplatin induced behavioral alterations, mitochondrial dysfunction and neurotoxicity in rat brain. Mitochondrion 30: 168–176. doi:10.1016/j.mito.2016.08.001.
172. Wang YS, Li YY, Cui W, Li LB, Zhang ZC, Tian BP, Zhang GS (2017) Melatonin Attenuates Pain Hypersensitivity and Decreases Astrocyte-Mediated Spinal Neuroinflammation in a Rat Model of Oxaliplatin-Induced Pain. Inflammation 40 (6): 2052–2061. doi:10.1007/s10753-017-0645-y.
173. Ucar M, Korkmaz A, Reiter RJ, et al. (2007) Melatonin alleviates lung damage induced by the chemical warfare agent nitrogen mustard. Toxicol. Lett. 173 (2): 124-131. doi:10.1016/j.toxlet.2007.07.005.
174. Macit E, Yaren H, Aydin I, Kunak ZI, Yaman H, Onguru O, Uysal B, Korkmaz A, Turel S, Kenar L (2013) The protective effect of melatonin and S-methylisothiourea treatments in nitrogen mustard induced lung toxicity in rats. Environ. Toxicol. Pharmacol. 36 (3): 1283–1290. doi:10.1016/j.etap.2013.10.001.
175. Shokrzadeh M, Naghshvar F, Ahmadi A, Chabra A, Jeivad F (2014) The potential ameliorative effects of melatonin against cyclophosphamide-induced DNA damage in murine bone marrow cells. Eur. Rev. Med. Pharmacol. Sci. 18 (5): 605–611. PMID: 24668699.
176. Ferreira SG, Peliciari-Garcia RA, Takahashi-Hyodo SA, Rodrigues AC, Amaral FG, Berra CM, Bordin S, Curi R, Cipolla-Neto J (2013) Effects of melatonin on DNA damage induced by cyclophosphamide in rats. Braz. J. Med. Biol. Res. 46 (3): 278–286. doi:10.1590/1414-431x20122230.
177. Cui Y, Ren L, Li B, Fang J, Zhai Y, He X, Du E, Miao,Y, Hua, J, PengS (2017) Melatonin relieves busulfan-induced spermatogonial stem cell apoptosis of mouse testis by inhibiting endoplasmic reticulum stress. Cell. Physiol. Biochem. 44 (6): 2407–2421. doi:10.1159/000486165.
178. Abraham P, Kolli VK, Rabi S (2010) Melatonin attenuates methotrexate-induced oxidative stress and renal damage in rats. Cell Biochem. Funct. 28 (5): 426–433. doi:10.1002/cbf.1676.
179. Oguz E, Kocarslan S, Tabur S, Sezen H, Yilmaz Z, Aksoy N (2015) Effects of lycopene alone or combined with melatonin on methotrexate-induced nephrotoxicity in rats. Asian Pac. J. Cancer Prev. 16 (14): 6061–6066. doi:10.7314/apjcp.2015.16.14.6061.
180. Sirichoat A, Suwannakot K, Chaisawang P, Pannangrong W, Aranarochana A, Wigmore P,Welbat JU (2020) Melatonin attenuates 5-fluorouracil-induced spatial memory and hippocampal neurogenesis impairment in adult rats. Life Sci. 248: 117468. doi:10.1016/j.lfs.2020.117468.
181. Galley HF, McCormick B, Wilson KL, Lowes DA, Colvin L, Torsney C (2017) Melatonin limits paclitaxel-induced mitochondrial dysfunction in vitro and protects against paclitaxel-induced neuropathic pain in the rat. J. Pineal Res. 63 (4): e12444. doi:10.1111/jpi.12444.
182. Gianni L, Dafni U, Gelber RD, Azambuja E, Muehlbauer S, Goldhirsch A, Untch M, Smith I, Baselga J, Jackisch C, Cameron D, Mano M, Pedrini JL, Veronesi A, Mendiola C, Pluzanska A, Semiglazov V, Vrdoljak E, Eckart MJ, Shen Z, Herceptin Adjuvant (HERA) Trial Study Team (2011). Treatment with trastuzumab for 1 year after adjuvant chemotherapy in patients with HER2-positive early breast cancer: a 4-year follow-up of a randomised controlled trial. Lancet Oncol. 12 (3): 236–244. doi:10.1016/S1470-2045(11)70033-X.
183. Ghani EA, Kerr I, Dada R (2014) Grade 3 trastuzumab-induced neutropenia in breast cancer patient. J. Oncol. Pharm. Pract. 20 (2): 154–157. doi:10.1177/1078155213487394.
184. Ozturk M, Ozler M, Kurt YG, Ozturk B, Uysal B, Ersoz N, Yasar M, Demirbas S, Kurt B, Acikel C, Oztas Y, Arpaci F, Topal T, Ozet A, Ataergin S, Kuzhan O, Oter S, Korkmaz A (2011) Efficacy of melatonin, mercaptoethylguanidine and 1400W in doxorubicin- and trastuzumab-induced cardiotoxicity. J. Pineal Res. 50 (1): 89–96. doi:10.1111/j.1600-079X.2010.00818.x.
185. Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang S, Xu K (2017) Melatonin, a full service anti-cancer agent: inhibition of initiation, progression and metastasis. Int. J. Mol. Sci. 18 (4): 843. doi:10.3390/ijms18040843.
186. Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8 (24): 39896–39921. doi:10.18632/oncotarget.16379.
187. Lee JH, Yoon YM, Han YS, Yun CW, Lee, SH (2018) Melatonin promotes apoptosis of oxaliplatin-resistant colorectal cancer cells through inhibition of cellular prion protein. Anticancer Res. 38 (4): 1993–2000. doi:10.21873/anticanres.12437.
188. Sakatani A, Sonohara F, Goel A (2019) Melatonin-mediated downregulation of thymidylate synthase as a novel mechanism for overcoming 5-fluorouracil associated chemoresistance in colorectal cancer cells. Carcinogenesis 40 (3): 422–431. doi:10.1093/carcin/bgy186.
189. Liu Z, Sang X, Wang M, Liu Y, Liu J, Wang X, Liu P, Cheng H (2021) Melatonin potentiates the cytotoxic effect of Neratinib in HER2+ breast cancer through promoting endocytosis and lysosomal degradation of HER2. Oncogene 40 (44): 6273–6283. doi:10.1038/s41388-021-02015-w.
190. Fic M, Gomulkiewicz A, Grzegrzolka J, Podhorska-Okolow M, Zabel M, Dziegiel P, Jablonska K (2017) The impact of melatonin on colon cancer cells' resistance to doxorubicin in an in vitro study. Int. J. Mol. Sci. 18 (7): 1396. doi:10.3390/ijms18071396.
191. Koşar PA, Nazıroğlu M, Övey İS, Çiğ B (2016) Synergic effects of doxorubicin and melatonin on apoptosis and mitochondrial oxidative stress in MCF-7 breast cancer cells: Involvement of TRPV1 channels. J. Membr. Biol. 249 (1-2): 129–140. doi:10.1007/s00232-015-9855-0.
192. Chen L, Liu L, Li Y, Gao J (2018) Melatonin increases human cervical cancer HeLa cells apoptosis induced by cisplatin via inhibition of JNK/Parkin/mitophagy axis. In Vitro Cell Dev. Biol. Anim. 54 (1): 1–10. doi:10.1007/s11626-017-0200-z.
193. Gao Y, Xiao X, Zhang C, Yu W, Guo W, Zhang Z, Li Z, Feng X, Hao J, Zhang K, Xiao B, Chen M, Huang W, Xiong S, Wu X, Deng W (2017) Melatonin synergizes the chemotherapeutic effect of 5-fluorouracil in colon cancer by suppressing PI3K/AKT and NF-κB/iNOS signaling pathways. J. Pineal Res. 62 (2): 10.1111/jpi.12380. doi:10.1111/jpi.12380.
194. Lissoni P, Barni S, Mandala M, Ardizzoia A, Paolorossi F, Vaghi M, et al. (1999) Decreased toxicity and increased efficacy of cancer chemotherapy using the pineal hormone melatonin in metastatic solid tumour patients with poor clinical status. Eur. J. Cancer 35 (12): 1688–1692. doi:10.1016/s0959-8049(99)00159-8.
195. Lissoni P, Chilelli M, Villa S, Cerizza L, Tancini G (2003) Five years survival in metastatic non-small cell lung cancer patients treated with chemotherapy alone or chemotherapy and melatonin: a randomized trial. J. Pineal Res. 35 (1): 12–15. doi:10.1034/j.1600-079x.2003.00032.x.
196. Zharinov GM, Bogomolov OA, Chepurnaya IV, Neklasova NY, Anisimov VN (2020) Melatonin increases overall survival of prostate cancer patients with poor prognosis after combined hormone radiation treatment. Oncotarget 11 (41): 3723–3729. doi:10.18632/oncotarget.27757.
197. Reiter RJ, Tan DX, Sainz RM, Mayo JC, Lopez-Burillo S (2002) Melatonin: reducing the toxicity and increasing the efficacy of drugs. J. Pharm.Pharmacol. 54 (10): 1299–1321.doi:10.1211/002235702760345374.
198. Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J. Pineal Res. 54 (2): 127–138. doi:10.1111/jpi.12026.
199. Anderson G (2022) Tumor microenvironment and metabolism: role of the mitochondrial melatonergic pathway in determining intercellular interactions in a new dynamic homeostasis. Int. J. Mol. Sci. 24 (1): 311. doi:10.3390/ijms24010311.
200. Yao JK, Dougherty GG.Jr, Reddy RD, Keshavan MS, Montrose DM, Matson WR, Rozen S, Krishnan RR, McEvoy J, Kaddurah-Daouk R (2010) Altered interactions of tryptophan metabolites in first-episode neuroleptic-naive patients with schizophrenia. Mol. Psychiatry 15 (9): 938–953. doi:10.1038/mp.2009.33.
201. Mokkawes T, de Visser SP (2023) Melatonin activation by cytochrome P450 isozymes: How does CYP1A2 compare to CYP1A1?. Int. J. Mol. Sci. 24 (4): 3651. doi:10.3390/ijms24043651.
202. Liu Y, Liang X, Dong W, Fang Y, Lv J, Zhang T, Fiskesund R, Xie J, Liu J, Yin X, Jin X, Chen D, Tang K, Ma J, Zhang H, Yu J, Yan J, Liang H, Mo S, Cheng F, Huang B (2018) Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation. Cancer Cell 33 (3): 480–494.e7. doi:10.1016/j.ccell.2018.02.005.
203. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. USA 107 (6): 2687–2692.doi:10.1073/pnas.0913572107.
204. Anderson G, Reiter RJ (2019) Glioblastoma: Role of mitochondria n-acetylserotonin/melatonin ratio in mediating effects of mir-451 and aryl hydrocarbon receptor and in coordinating wider biochemical changes. Int. J. Tryptophan. Res. 12: 1178646919855942. doi:10.1177/1178646919855942.
205. Reiter RJ, Sharma R, Ma Q, Rosales-Corral SA, Acuna-Castroviejo D,Escames G (2019) Inhibition of mitochondrial pyruvate dehydrogenase kinase: a proposed mechanism by whichmelatonin causes cancer cells to overcome aerobic glycolysis, limit tumor growth and reverseinsensitivity to chemotherapy. Melatonin Res. 2 (3): 105-119. doi:10.32794/mr11250033.
206. Anderson G (2019) Daytime orexin and night-time melatonin regulation of mitochondria melatoninroles in circadian oscillations systemically and centrally in breast cancer symptomatology. Melatonin Res. 2 (4): 1-8; doi: 10.32794/mr11250037.
207. Huo X, Wang C, Yu Z, Peng Y, Wang S, Feng S, Zhang S, Tian X, Sun C, Liu K, Deng S, Ma X (2017) Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: An implication of the therapeutic potential. J. Pineal Res. 62 (4): 10.1111/jpi.12390. doi:10.1111/jpi.12390.
208. Anderson G (2020) Tumourmicroenvironment: roles of the aryl hydrocarbon receptor, O-glcnacylation, acetyl-coa and melatonergic pathway in regulating dynamic metabolic interactions across cell types-tumour microenvironment and metabolism. Int. J. Mol. Sci. 22 (1): 141. doi:10.3390/ijms22010141.
209. Das NK, Samanta S (2022) The potential anti-cancer effects of melatonin on breast cancer. Explor. Med. 3: 112–27.doi: 10.37349/emed.2022.00078.
210. Wang L, Wang C, Choi, WS (2022) Use of melatonin in cancer treatment: Where are we?.Int. J. Mol. Sci. 23 (7): 3779. doi:10.3390/ijms23073779.
Published
2023-06-30
How to Cite
[1]
Chakraborty, S., Sarkar, S., Chattopadhyay, A. and Bandyopadhyay, D. 2023. The dual-actions of melatonin as a potential oncostatic agent and a protector against chemotherapy-induced toxicity. Melatonin Research. 6, 2 (Jun. 2023), 189-214. DOI:https://doi.org/https://doi.org/10.32794/mr112500149.

Most read articles by the same author(s)

1 2 > >>