Prevention of diabetic cardiomyopathy through metabolic amendments of myocardium by melatonin: a role beyond antioxidative efficiency

Melatonin modulates metabolic pathways to prevent diabetic cardiomyopathy

  • Adrita Banerjee Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata-700009, India
  • Aindrila Chattopadhyay Department of Physiology, Vidyasagar College, 39, Sankar Ghosh Lane, Kolkata-700006, India
  • Debasish Bandyopadhyay Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata-700009, India
Keywords: Melatonin modulates metabolic pathways to prevent diabetic cardiomyopathy

Abstract

The alarming rise in diabetes throughout the world brings the scientist at the brink of finding a suitable compound that can impede glucotoxicity and insulin resistance involved development as well as progression of diabetes. Either devoid of insulin or resistance of cells to insulin brings forward the pancreatic tissue as the most vulnerably affected system. However, cardiac tissue, being the most exposed to circulation with high glucose content, is another target of hyperglycaemia. The remodelling of cardiac tissue in insulin resistant diabetic individuals includes cardiac hypertrophy along with misaligned diastolic and systolic functions. All these amendments cause declined cardiac contractility, the major indication of heart failure. The search for rationale behind such undesirable alterations put forward the involvement of altered cardiac metabolism in diabetes. Both carbohydrate and fatty acid metabolism have been found to be affected in diabetic individuals with declined glycolysis alongwith escalated lipolysis leading toward rise in fatty acid oxidation. Melatonin, with its antioxidative virtue prevents glucotoxicity induced excess reactive oxygen species (ROS) generation to afford protection to cellular systems. Nevertheless, the indole hinders ROS production by lowering both glucose and fatty acid accumulation through augmenting glycolysis along with diminishing lipolysis. Melatonin also expands its worth by keeping in  order gluconeogenesis and glycogenesis pathways of metabolism in diabetic myocardium. The regulation of important metabolic pathways by melatonin in hyperglycaemic cardiac tissue assists the myocardium to maintain energy balance, the primary need for contractile behaviour. Hence, this review focuses on metabolic modulatory actions of melatonin in diabetic myocardium, which may encourage its usage as a saviour for diabetic cardiomyopathy.

References

1. Salehidoost R, Mansouri A, Amini M, Aminorroaya Yamini S, Aminorroaya A (2020) Diabetes and all-cause mortality, a 18-year follow-up study. Sci. Rep. 10 (1): 1-8. DOI: 10.1038/s41598-020-60142-y.
2. Miyazaki Y, Kawano H, Yoshida T, Miyamoto S, Hokamaki J, Nagayoshi Y, Yamabe H, Nakamura H, Yodoi J, Ogawa H (2007) Pancreatic B‐cell function is altered by oxidative stress induced by acute hyperglycaemia. Diab. Med. 24 (2): 154-160. DOI: 10.1111/j.1464-5491.2007.02058.x.
3. Dominiczak MH (2003) Obesity, glucose intolerance and diabetes and their links to cardiovascular disease. Implications for laboratory medicine. Clin. Chem. Lab. Med. 41 (9): 1266-1278. DOI: 10.1515/CCLM.2003.194.
4. Fu Z, Gilbert ER, Liu D (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 9 (1): 25-53. DOI: 10.2174/157339913804143225.
5. Haythorne E, Rohm M, van de Bunt M, Brereton MF, Tarasov AI, Blacker TS, Sachse G, Silva dos Santos M, Terron Exposito R, Davis S, Baba O (2019) Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic β-cells. Nat. Commun. 10 (1): 1-7. DOI: 10.1038/s41467-019-10189-x.
6. Oyadomari S, Araki E, Mori M (2002) Endoplasmic reticulum stress-mediated apoptosis in pancreatic β-cells. Apoptosis 7 (4): 335-345. DOI: 10.1023/A:1016175429877.
7. Petersen MC, Shulman GI (2018) Mechanisms of insulin action and insulin resistance. Phys. Rev. 98 (4): 2133-2223. DOI: 10.1152/physrev.00063.2017.
8. Baena-Díez JM, Peñafiel J, Subirana I, Ramos R, Elosua R, Marín-Ibañez A, Guembe MJ, Rigo F, Tormo-Díaz MJ, Moreno-Iribas C, Cabré JJ (2016) Risk of cause-specific death in individuals with diabetes: a competing risks analysis. Diabetes Care 39 (11): 1987-1995. DOI: 10.2337/dc16-0614.
9. Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA (2018) Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 17 (1): 1-4. DOI: 10.1186/s12933-018-0762-4.
10. Rawshani A, Rawshani A, Franzén S, Eliasson B, Svensson AM, Miftaraj M, McGuire DK, Sattar N, Rosengren A, Gudbjörnsdottir S (2017) Mortality and cardiovascular disease in type 1 and type 2 diabetes. N. Engl. J. Med. 376 (15): 1407-1418. DOI: 10.1056/NEJMoa1608664.
11. Banerjee A, Chattopadhyay A, Pal PK, Bandyopadhyay D (2020) Melatonin is a potential therapeutic molecule for oxidative stress induced red blood cell (RBC) injury: A review. Melatonin Res. 3 (1): 1-31. DOI: 10.32794/mr11250045.
12. Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord. 11 (1): 31-39. DOI: 10.1007/s11154-010-9131-7.
13. Hayat SA, Patel B, Khattar RS, Malik RA (2004) Diabetic cardiomyopathy: mechanisms, diagnosis and treatment. Clin. Sci. 107 (6): 539-557. DOI: 10.1042/CS20040057.
14. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am. J. Card. 30 (6): 595-602. DOI: 10.1016/0002-9149(72)90595-4.
15. Robertson RP, Harmon JS (2006) Diabetes, glucose toxicity, and oxidative stress: a case of double jeopardy for the pancreatic islet β cell. Free Radic. Biol. Med. 41 (2): 177-184. DOI: 10.1016/j.freeradbiomed.2005.04.030.
16. Ansley DM, Wang B (2013) Oxidative stress and myocardial injury in the diabetic heart. J. Pathol. 229 (2): 232-241. DOI: 10.1002/path.4113.
17. Doria A, Nosadini R, Avogaro A, Fioretto P, Crepaldi G (1991) Myocardial metabolism in type 1 diabetic patients without coronary artery disease. Diab. Med. 8 (S2): S104-S107. DOI: 10.1111/j.1464-5491.1991.tb02168.x.
18. Kenno KA, Severson DL (1985) Lipolysis in isolated myocardial cells from diabetic rat hearts. Am. J. Physiol. Heart Circ. Physiol. 249 (5): H1024-H1030.
19. Herrero P, Peterson LR, McGill JB, Matthew S, Lesniak D, Dence C, Gropler RJ (2006) Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J. Am. Coll. Cardiol. 47 (3): 598-604. DOI: 10.1016/j.jacc.2005.09.030.
20. Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56 (10): 2457-2466. DOI: 10.2337/db07-0481.
21. Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis. Model Mech. 2 (9-10): 454-466. DOI: 10.1242/dmm.001941.
22. Karwi QG, Sun Q, Lopaschuk GD (2021) The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 10 (11): 3259. DOI: 10.3390/cells10113259.
23. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W (2001) Decreased cardiolipin synthesis corresponds with cytochromec release in palmitate-induced cardiomyocyte apoptosis. J. Biol. Chem. 276 (41): 38061-38067. DOI: 10.1074/jbc.M107067200.
24. Drăgoi CM, Arsene AL, Dinu-Pîrvu CE, Dumitrescu IB, Popa DE, Burcea-Dragomiroiu GT, Udeanu DI, Timnea OC, Velescu BȘ, Nicolae AC (2017) Melatonin: a silent regulator of the glucose homeostasis, eds Caliskan M, Kavakli IH, Oz GC (IntechOpen, London) pp 99. DOI: 10.5772/66625.
25. Zhu T, Guan S, Lv D, Zhao M, Yan L, Shi L, Ji P, Zhang L, Liu G (2021) Melatonin modulates lipid metabolism in porcine cumulus–oocyte complex via its receptors. Front. Cell Dev. Biol. 9: 648209. DOI: 10.3389/fcell.2021.648209.
26. Sun H, Wang X, Chen J, Gusdon AM, Song K, Li L, Qu S (2018) Melatonin treatment improves insulin resistance and pigmentation in obese patients with acanthosis nigricans. Int. J. Endocrinol. 2018: 2304746. DOI: 10.1155/2018/2304746.
27. Wright JJ, Kim J, Buchanan J, Boudina S, Sena S, Bakirtzi K, Ilkun O, Theobald HA, Cooksey RC, Kandror KV, Abel ED (2009) Mechanisms for increased myocardial fatty acid utilization following short-term high-fat feeding. Cardiovasc. Res. 82 (2): 351-360. DOI: 10.1093/cvr/cvp017.
28. Faria JA, Kinote A, Ignacio-Souza LM, de Araújo TM, Razolli DS, Doneda DL, Paschoal LB, Lellis-Santos C, Bertolini GL, Velloso LA, Bordin S (2013) Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats. Am. J. Physiol. Endocrinol. Metab. 305 (2): E230-E242. DOI: 10.1152/ajpendo.00094.2013.
29. Ou TH, Tung YT, Yang TH, Chien YW (2019) Melatonin improves fatty liver syndrome by inhibiting the lipogenesis pathway in hamsters with high-fat diet-induced hyperlipidemia. Nutrients 11 (4): 748. DOI: 10.3390/nu11040748.
30. Agil A, El‐Hammadi M, Jiménez‐Aranda A, Tassi M, Abdo W, Fernández‐Vázquez G, Reiter RJ (2015) Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats. J. Pineal Res. 59 (1): 70-79. DOI: 10.1111/jpi.12241.
31. Lundbæk K (1954) Diabetic angiopathy: a specific vascular disease. Lancet 263 (6808): 377-379. DOI: 10.1016/S0140-6736(54)90924-1.
32. Borghetti G, von Lewinski D, Eaton DM, Sourij H, Houser SR, Wallner M (2018) Diabetic cardiomyopathy: current and future therapies. Beyond glycemic control. Front. Physiol. 9: 1514. DOI: 10.3389/fphys.2018.01514.
33. Fein FS, Sonnenblick EH (1985) Diabetic cardiomyopathy. Prog. Cardiovasc. Dis. 27 (4): 255-270. DOI: 10.1016/0033-0620(85)90009-X.
34. Schocken DD, Benjamin EJ, Fonarow GC, Krumholz HM, Levy D, Mensah GA, Narula J, Shor ES, Young JB, Hong Y (2008) Prevention of heart failure: a scientific statement from the American Heart Association Councils on epidemiology and prevention, clinical cardiology, cardiovascular nursing, and high blood pressure research; Quality of Care and Outcomes Research Interdisciplinary Working Group; and Functional Genomics and Translational Biology Interdisciplinary Working Group. Circulation 117 (19): 2544-2565. DOI: 10.1161/CIRCULATIONAHA.107.188965.
35. Gilca GE, Stefanescu G, Badulescu O, Tanase DM, Bararu I, Ciocoiu M (2017) Diabetic cardiomyopathy: current approach and potential diagnostic and therapeutic targets. J. Diabetes Res. 2017: 1310265. DOI: 10.1155/2017/1310265.
36. Tan Y, Zhang Z, Zheng C, Wintergerst KA, Keller BB, Cai L (2020) Mechanisms of diabetic cardiomyopathy and potential therapeutic strategies: preclinical and clinical evidence. Nat. Rev. Cardiol. 17 (9): 585-607. DOI: 10.1038/s41569-020-0339-2.
37. Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE (2002) Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98 (1-2): 33-39. DOI: 10.1159/000064682.
38. Bell DS (2003) Diabetic cardiomyopathy. Diabetes care 26 (10): 2949-5291. DOI: 10.2337/diacare.26.10.2949.
39. Karason K, Sjöström L, Wallentin I, Peltonen M (2003) Impact of blood pressure and insulin on the relationship between body fat and left ventricular structure. Eur. Heart J. 24 (16): 1500-1505. DOI: 10.1016/S0195-668X(03)00312-9.
40. Ingelsson E, Sundström J, Ärnlöv J, Zethelius B, Lind L (2005) Insulin resistance and risk of congestive heart failure. JAMA. 294 (3): 334-341. DOI: 10.1001/jama.294.3.334.
41. Cook SA, Varela-Carver A, Mongillo M, Kleinert C, Khan MT, Leccisotti L, Strickland N, Matsui T, Das S, Rosenzweig A, Punjabi P (2010) Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur. Heart J. 31 (1): 100-111. DOI: 10.1093/eurheartj/ehp396.
42. Tate M, Grieve DJ, Ritchie RH (2017) Are targeted therapies for diabetic cardiomyopathy on the horizon? Clin. Sci. 131 (10): 897-915. DOI: 10.1042/CS20160491.
43. Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B (1977) Evidence for cardiomyopathy in familial diabetes mellitus. J. clin. Invest. 60 (4): 885-899. DOI: 10.1172/JCI108843.
44. Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B, Anversa P (2000) Myocardial cell death in human diabetes. Circ. Res. 87 (12): 1123-1132. DOI: 10.1161/01.RES.87.12.1123.
45. Kumar R, Yong QC, Thomas CM, Baker KM (2012) Intracardiac intracellular angiotensin system in diabetes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 302 (5): R510-R517. DOI: 10.1152/ajpregu.00512.2011.
46. Krentz AJ, Clough G, Byrne CD (2007) Interactions between microvascular and macrovascular disease in diabetes: pathophysiology and therapeutic implications. Diabetes Obes. Metab. 9 (6): 781-791. DOI: 10.1111/j.1463-1326.2007.00670.x.
47. Calcutt NA, Cooper ME, Kern TS, Schmidt AM (2009) Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nat. Rev. Drug Discov. 8 (5): 417-430.
48. Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ. Res. 122 (4): 624-638. DOI: 10.1161/CIRCRESAHA.117.311586.
49. Centers for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: US department of health and human services, centers for disease control and prevention. 201 (1): 2568-2569.
50. Huynh K, Bernardo BC, McMullen JR, Ritchie RH (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol. Ther. 142 (3): 375-415. DOI: 10.1016/j.pharmthera.2014.01.003.
51. Kannel WB (2011) Framingham study insights on diabetes and cardiovascular disease. Clin. Chem. 57 (2): 338-239. DOI: 10.1373/clinchem.2010.149740.
52. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB (2004) The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 27 (8): 1879-1884. DOI: 10.2337/diacare.27.8.1879.
53. Karnik AA, Fields AV, Shannon RP (2007) Diabetic cardiomyopathy. Curr. Hypertens Rep. 9 (6): 467-473.
54. Athithan L, Gulsin GS, McCann GP, Levelt E (2019) Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date. World J. Diabetes 10 (10): 490-510. DOI: 10.4239/wjd.v10.i10.490.
55. Isfort M, Stevens SC, Schaffer S, Jong CJ, Wold LE (2014) Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail. Rev. 19 (1): 35-48. DOI: 10.1007/s10741-013-9377-8.
56. Levelt E, Gulsin G, Neubauer S, McCann GP (2018) MECHANISMS IN ENDOCRINOLOGY: Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur. J. Endocrinol. 178 (4): R127-R139. DOI: 10.1530/EJE-17-0724.
57. Rodrigues B, Cam MC, McNeill JH (1995) Myocardial substrate metabolism: implications for diabetic cardiomyopathy. J. Mol. Cell Cardiol. 27 (1): 169-179. DOI: 10.1016/S0022-2828(08)80016-8.
58. Guo CA, Guo S (2017) Insulin receptor substrate signaling controls cardiac energy metabolism and heart failure. J. Endocrinol. 233 (3): R131-R143. DOI: 10.1530/joe-16-0679.
59. Wold LE, Ceylan‐Isik AF, Ren J (2005) Oxidative stress and stress signaling: menace of diabetic cardiomyopathy. Acta Pharmacol. Sin. 26 (8): 908-917. DOI: 10.1111/j.1745-7254.2005.00146.x.
60. Bugger H, Abel ED (2010) Mitochondria in the diabetic heart. Cardiovasc. Res. 88 (2): 229-240. DOI: 10.1093/cvr/cvq239.
61. Rider OJ, Cox P, Tyler D, Clarke K, Neubauer S (2012) Myocardial substrate metabolism in obesity. Int. J. Obes. 37 (7): 972-979. DOI: 10.1038/ijo.2012.170.
62. Bing RJ, Siegel A, Ungar I, Gilbert M (1954) Metabolism of the human heart: II. Studies on fat, ketone and amino acid metabolism. Am. J. Med. 16 (4): 504-515. DOI: 10.1016/0002-9343(54)90365-4.
63. Wall SR, Lopaschuk GD (1989) Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. Biochim. Biophys. Acta. 1006 (1): 97-103. DOI: 10.1016/0005-2760(89)90328-7.
64. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, Dence C, Klein S, Marsala J, Meyer T, Gropler RJ (2004) Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109 (18): 2191-2196. DOI: 10.1161/01.CIR.0000127959.28627.F8.
65. Lopaschuk GD, Russell JC (1991) Myocardial function and energy substrate metabolism in the insulin-resistant JCR: LA corpulent rat. J. Appl. Physiol. 71 (4): 1302-1308. DOI: 0.1152/jappl.1991.71.4.1302.
66. Zou MH, Xie Z (2013) Regulation of interplay between autophagy and apoptosis in the diabetic heart: new role of AMPK. Autophagy 9 (4): 624-625. DOI: 10.4161/auto.23577.
67. Kolter TH, Uphues IN, Eckel JU (1997) Molecular analysis of insulin resistance in isolated ventricular cardiomyocytes of obese Zucker rats. Am. J. Physiol. 273 (1): E59-E67. DOI: 10.1152/ajpendo.1997.273.1.E59.
68. Randle PJ, Kerbey AL, Espinal J (1988) Mechanisms decreasing glucose oxidation in diabetes and starvation: role of lipid fuels and hormones. Diabetes Metab. Rev. 4 (7): 623-638. DOI: 10.1002/dmr.5610040702.
69. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281 (7285): 785-789. DOI: 10.1016/S0140-6736(63)91500-9.
70. Camps M, Castello A, Munoz P, Monfar M, Testar X, Palacin M, Zorzano A (1992) Effect of diabetes and fasting on GLUT-4 (muscle/fat) glucose-transporter expression in insulin-sensitive tissues. Heterogeneous response in heart, red and white muscle. Biochem. J. 282 (3): 765-772. DOI: 10.1042/bj2820765.
71. Razeghi P, Young ME, Cockrill TC, Frazier OH, Taegtmeyer H (2002) Downregulation of myocardial myocyte enhancer factor 2C and myocyte enhancer factor 2C–regulated gene expression in diabetic patients with nonischemic heart failure. Circulation 106 (4): 407-411. DOI: 10.1161/01.CIR.0000026392.80723.DC.
72. Avogaro A, Nosadini R, Doria A, Fioretto P, Velussi M, Vigorito C, Sacca L, Toffolo G, Cobelli C, Trevisan R (1990) Myocardial metabolism in insulin-deficient diabetic humans without coronary artery disease. Am. J. Physiol. 258 (4): E606-E618. DOI: 10.1152/ajpendo.1990.258.4.E606.
73. Monti LD, Lucignani G, Landoni C, Moresco RM, Piatti P, Stefani I, Pozza G, Fazio F (1995) Myocardial glucose uptake evaluated by positron emission tomography and fluorodeoxyglucose during hyperglycemic clamp in IDDM patients: role of free fatty acid and insulin levels. Diabetes 44 (5):537-542. DOI: 10.2337/diab.44.5.537.
74. Hällsten K, Virtanen KA, Lönnqvist F, Janatuinen T, Turiceanu M, Rönnemaa T, Viikari J, Lehtimäki T, Knuuti J, Nuutila P (2004) Enhancement of insulin‐stimulated myocardial glucose uptake in patients with type 2 diabetes treated with rosiglitazone. Diabet. Med. 21 (12): 1280-1287. DOI: 10.1111/j.1464-5491.2004.01332.x.
75. Lautamaki R, Airaksinen KJ, Seppanen M, Toikka J, Luotolahti M, Ball E, Borra R, Harkonen R, Iozzo P, Stewart M, Knuuti J (2005) Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, double-blind, placebo-controlled study. Diabetes 54 (9): 2787-2794. DOI: 10.2337/diabetes.54.9.2787.
76. Harmancey R, Lam TN, Lubrano GM, Guthrie PH, Vela D, Taegtmeyer H (2012) Insulin resistance improves metabolic and contractile efficiency in stressed rat heart. FASEB J. 26 (8): 3118-3126. DOI: 10.1096/fj.12-208991.
77. Peterson LR, Saeed IM, McGill JB, Herrero P, Schechtman KB, Gunawardena R, Recklein CL, Coggan AR, DeMoss AJ, Dence CS, Gropler RJ (2012) Sex and type 2 diabetes: Obesity‐independent effects on left ventricular substrate metabolism and relaxation in humans. Obesity 20 (4):802-810. DOI: 10.1038/oby.2011.208.
78. How OJ, Larsen TS, Hafstad AD, Khalid A, Myhre ES, Murray AJ, T. Boardman N, Cole M, Clarke K, Severson DL, Aasum E (2007) Rosiglitazone treatment improves cardiac efficiency in hearts from diabetic mice. Arch. Physiol. Biochem. 113 (4-5): 211-220. DOI: 10.1080/13813450701783281.
79. Koivisto VA, Stevens IK, Mattock M, Ebeling P, Muggeo M, Stephenson J, Idzior-Walus B (1996) EURODIAB IDDM Complications Study Group. Cardiovascular disease and its risk factors in IDDM in Europe. Diabetes care 19 (7): 689-697. DOI: 10.2337/diacare.19.7.689.
80. van der Vusse GJ, van Bilsen M, Glatz JF (2000) Cardiac fatty acid uptake and transport in health and disease. Cardiovasc. Res. 45 (2): 279-293. DOI: 10.1016/S0008-6363(99)00263-1.
81. Bagheri R, Qasim AN, Mehta NN, Terembula K, Kapoor S, Braunstein S, Schutta M, Iqbal N, Lehrke M, Reilly MP (2010) Relation of plasma fatty acid binding proteins 4 and 5 with the metabolic syndrome, inflammation and coronary calcium in patients with type-2 diabetes mellitus. Am. J. Cardiol. 106 (8): 1118-1123. DOI: 10.1016/j.amjcard.2010.06.028.
82. Coort SL, Hasselbaink DM, Koonen DP, Willems J, Coumans WA, Chabowski A, van der Vusse GJ, Bonen A, Glatz JF, Luiken JJ (2004) Enhanced sarcolemmal FAT/CD36 content and triacylglycerol storage in cardiac myocytes from obese zucker rats. Diabetes 53 (7): 1655-1663. DOI: 10.2337/diabetes.53.7.1655.
83. Carley AN, Atkinson LL, Bonen A, Harper ME, Kunnathu S, Lopaschuk GD, Severson DL (2007) Mechanisms responsible for enhanced fatty acid utilization by perfused hearts from type 2 diabetic db/db mice. Arch. Physiol. Biochem. 113 (2): 65-75. DOI: 10.1080/13813450701422617.
84. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH (1988) Changes in substrate metabolism and effects of excess fatty acids in reperfused myocardium. Circ. Res. 62 (3): 535-542. DOI: 10.1161/01.RES.62.3.535.
85. Falcão-Pires I, Leite-Moreira AF (2012) Diabetic cardiomyopathy: understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev. 17 (3): 325-344. DOI: DOI 10.1007/s10741-011-9257-z.
86. Bowker-Kinley Mm, Davis Iw, Wu P, Harris Ar, Popov M (1998). Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem. J. 329 (1): 191-196. DOI: 10.1042/bj3290191.
87. Carley AN, Severson DL (2005) Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim. Biophys. Acta 1734 (2): 112-126. DOI: 10.1016/j.bbalip.2005.03.005.
88. Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP (2003) A critical role for PPARα-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc. Natl. Acad. Sci. 100 (3): 1226-1231. DOI: 10.1073/pnas.0336724100.
89. Hopkins TA, Sugden MC, Holness MJ, Kozak R, Dyck JR, Lopaschuk GD (2003) Control of cardiac pyruvate dehydrogenase activity in peroxisome proliferator-activated receptor-α transgenic mice. Am. J. Physiol. Heart Circ. Physiol. 285 (1): H270-H276. DOI: 10.1152/ajpheart.00852.2002.
90. Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, Litwin SE, Abel ED (2005) Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146 (12): 5341-5349. DOI: 10.1210/en.2005-0938.
91. Sharma V, Dhillon P, Wambolt R, Parsons H, Brownsey R, Allard MF, McNeill JH (2008) Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. Am. J. Physiol. Heart Circ. Physiol. 294 (4): H1609-H1620. DOI: 10.1152/ajpheart.00949.2007.
92. Onay-Besikci A, Guner S, Arioglu E, Ozakca I, Ozcelikay AT, Altan VM (2007) The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts. Can. J. Physiol. Pharmacol. 85 (5): 527-535. DOI: 10.1139/Y07-036.
93. Rijzewijk LJ, van der Meer RW, Lamb HJ, de Jong HW, Lubberink M, Romijn JA, Bax JJ, de Roos A, Twisk JW, Heine RJ, Lammertsma AA (2009) Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J. Am. Coll. Cardiol. 54 (16): 1524-1532.
94. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH (2000) Lipotoxic heart disease in obese rats: implications for human obesity. Proc. Natl. Acad. Sci. 97 (4): 1784-1789. DOI: 10.1073/pnas.97.4.1784.
95. Chun L, Junlin Z, Aimin W, Niansheng L, Benmei C, Minxiang L (2011) Inhibition of ceramide synthesis reverses endothelial dysfunction and atherosclerosis in streptozotocin-induced diabetic rats. Diabetes Res. Clin. Pract. 93 (1): 77-85. DOI: 10.1016/j.diabres.2011.03.017.
96. Ussher JR, Koves TR, Cadete VJ, Zhang L, Jaswal JS, Swyrd SJ, Lopaschuk DG, Proctor SD, Keung W, Muoio DM, Lopaschuk GD (2010) Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59 (10): 2453-2464. DOI: 10.2337/db09-1293.
97. Park TS, Hu Y, Noh HL, Drosatos K, Okajima K, Buchanan J, Tuinei J, Homma S, Jiang XC, Abel ED, Goldberg IJ (2008) Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J. Lipid Res. 49 (10): 2101-2112. DOI: 10.1194/jlr.M800147-JLR200.
98. Ljubkovic M, Gressette M, Bulat C, Cavar M, Bakovic D, Fabijanic D, Grkovic I, Lemaire C, Marinovic J (2019) Disturbed fatty acid oxidation, endoplasmic reticulum stress, and apoptosis in left ventricle of patients with type 2 diabetes. Diabetes 68 (10): 1924-1933. DOI: 10.2337/db19-0423.
99. Pappachan JM, Varughese GI, Sriraman R, Arunagirinathan G (2013) Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J. Diabetes 4 (5): 177-189. DOI: 10.4239/wjd.v4.i5.177.
100. Van de Weijer T, Schrauwen-Hinderling VB, Schrauwen P (2011) Lipotoxicity in type 2 diabetic cardiomyopathy. Cardiovasc. Res. 92 (1): 10-18. DOI: 10.1093/cvr/cvr212.
101. Nakayama H, Morozumi T, Nanto S, Shimonagata T, Ohara T, Takano Y, Kotani J, Watanabe T, Fujita M, Nishio M, Kusuoka H (2001) Abnormal myocardial free fattyacid utilization deteriorates with morphological changes in the hypertensive heart. Jpn. Circ. J. 65 (9): 783-787. DOI: 10.1253/jcj.65.783.
102. Rodrigues B, Cam MC, McNeill JH (1998) Metabolic disturbances in diabetic cardiomyopathy. Mol. Cell Biochem. 180 (1): 53-57.
103. Yazaki Y, Isobe M, Takahashi W, Kitabayashi H, Nishiyama O, Sekiguchi M, Takemura T (1999) Assessment of myocardial fatty acid metabolic abnormalities in patients with idiopathic dilated cardiomyopathy using 123I BMIPP SPECT: correlation with clinicopathological findings and clinical course. Heart 81 (2): 153-159. DOI: 10.1136/hrt.81.2.153.
104. Takeda N, Nakamura I, Hatanaka T, Ohkubo T, Nagano M (1988) Myocardial mechanical and myosin isoenzyme alterations in streptozotocin-diabetic rats. Jpn. Heart J. 29 (4): 455-463. DOI: 10.1536/ihj.29.455.
105. Abe T, Ohga Y, Tabayashi N, Kobayashi S, Sakata S, Misawa H, Tsuji T, Kohzuki H, Suga H, Taniguchi S, Takaki M (2002) Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am. J. Physiol. Heart Circ. Physiol. 282 (1): H138-H148. DOI: 10.1152/ajpheart.2002.282.1.H138.
106. McGavock JM, Lingvay I, Zib I, Tillery T, Salas N, Unger R, Levine BD, Raskin P, Victor RG, Szczepaniak LS (2007) Cardiac steatosis in diabetes mellitus: a 1H-magnetic resonance spectroscopy study. Circulation 116 (10): 1170-1175. DOI: 10.1161/CIRCULATIONAHA.106.645614.
107. Ceriello A (2000) Oxidative stress and glycemic regulation. Metabolism 49 (2): 27-29. DOI: 10.1016/S0026-0495(00)80082-7.
108. Banerjee A, Chattopadhyay A, Bandyopadhyay D (2021) Potentially synergistic effects of melatonin and metformin in alleviating hyperglycaemia: a comprehensive review. Melatonin. Res. 4 (4): 522-550. DOI: 10.32794/mr112500110.
109. Cai LU, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy. Cardiovasc. Toxicol. 1 (3): 181-193.
110. Khullar M, Al-Shudiefat AA, Ludke A, Binepal G, Singal PK (2010) Oxidative stress: a key contributor to diabetic cardiomyopathy. Can. J. Physiol. Pharmacol. 88 (3): 233-240. DOI: 0.1139/Y10-016.
111. Nunes S, Rolo AP, Palmeira CM, Reis F (2017) Diabetic cardiomyopathy: Focus on oxidative stress, mitochondrial dysfunction and inflammation. In: Kirali K, editor. Cardiomyopathies-Types and Treatments. London: IntechOpen. 235-257. DOI: 10.5772/65915.
112. González-Vı́lchez F, Ayuela J, Ares M, Pi J, Castillo L, Martı́n-Durán R (2005) Oxidative stress and fibrosis in incipient myocardial dysfunction in type 2 diabetic patients. Int. J. Cardiol. 101 (1): 53-58. DOI: 10.1016/j.ijcard.2004.03.009.
113. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93 (8): 903-907. DOI: 10.1136/hrt.2005.068270.
114. De Rosa S, Arcidiacono B, Chiefari E, Brunetti A, Indolfi C, Foti DP (2018) Type 2 diabetes mellitus and cardiovascular disease: genetic and epigenetic links. Front. Endocrinol. 9:2. DOI: 10.3389/fendo.2018.00002.
115. Carpentier AC (2018) Abnormal myocardial dietary fatty acid metabolism and diabetic Cardiomyopathy Can. J. Cardiol. 34 (5): 605-614. DOI: 10.1016/j.cjca.2017.12.029.
116. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation. 115 (25): 3213-3223. DOI: 10.1161/CIRCULATIONAHA.106.679597.
117. Galloway CA, Yoon Y (2015) Mitochondrial dynamics in diabetic cardiomyopathy. Antioxid. Redox Signal. 22 (17): 1545-1562. DOI: 10.1089/ars.2015.6293.
118. Jarosz J, Ghosh S, Delbridge LM, Petzer A, Hickey AJ, Crampin EJ, Hanssen E, Rajagopal V (2017) Changes in mitochondrial morphology and organization can enhance energy supply from mitochondrial oxidative phosphorylation in diabetic cardiomyopathy. Am. J. Physiol. Cell Physiol. 312 (2): C190-C197. DOI: 10.1152/ajpcell.00298.2016.
119. Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55 (3): 798-805. DOI: 10.2337/diabetes.55.03.06.db05-1039.
120. Tsushima K, Bugger H, Wende AR, Soto J, Jenson GA, Tor AR, McGlauflin R, Kenny HC, Zhang Y, Souvenir R, Hu XX (2018) Mitochondrial reactive oxygen species in lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ. Res. 122 (1): 58-73. DOI: 10.1161/CIRCRESAHA.117.311307.
121. Cacicedo JM, Benjachareowong S, Chou E, Ruderman NB, Ido Y (2005) Palmitate-induced apoptosis in cultured bovine retinal pericytes: roles of NAD(P)H oxidase, oxidant stress, and ceramide. Diabetes 54 (6): 1838-1845. DOI: 10.2337/diabetes.54.6.1838.
122. An D, Rodrigues B (2006) Role of changes in cardiac metabolism in development of diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 291 (4): H1489-H1506. DOI: 10.1152/ajpheart.00278.2006.
123. Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39: 359-407. DOI: 10.1146/annurev.genet.39.110304.095751.
124. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J. Physiol. 552 (2): 335-344. DOI: 10.1111/j.1469-7793.2003.00335.x.
125. Vettor R, Fabris R, Serra R, Lombardi AM, Tonello C, Granzotto M, Marzolo MO, Carruba MO, Ricquier D, Federspil G, Nisoli E (2002) Changes in FAT/CD36, UCP2, UCP3 and GLUT4 gene expression during lipid infusion in rat skeletal and heart muscle. Int. J. obes. 26 (6): 838-847. DOI: 10.1038/sj.ijo.0802005.
126. Murray AJ, Anderson RE, Watson GC, Radda GK, Clarke K (2004) Uncoupling proteins in human heart. Lancet 364 (9447): 1786-1788. DOI: 10.1016/S0140-6736(04)17402-3.
127. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED (2021) Cardiac energy metabolism in heart failure. Circ. Res. 128 (10): 1487-1513. DOI: 10.1161/CIRCRESAHA.121.318241.
128. Echtay KS, Esteves TC, Pakay JL, Jekabsons MB, Lambert AJ, Portero-Otín M, Pamplona R, Vidal-Puig AJ, Wang S, Roebuck SJ, Brand MD (2003) A signalling role for 4-hydroxy-2-nonenal in regulation of mitochondrial uncoupling. EMBO J. 22 (16): 4103-4110. DOI: 10.1093/emboj/cdg412.
129. Korkmaz A, Topal T, Tan DX, Reiter RJ (2009) Role of melatonin in metabolic regulation. Rev. Endocr. Metab. Disord. 10 (4): 261-270. DOI: 10.1007/s11154-009-9117-5.
130. Aksoy N, Vural H, Sabuncu T, Aksoy S (2003) Effects of melatonin on oxidative–antioxidative status of tissues in streptozotocin‐induced diabetic rats. Cell Biochem. Funct. 21 (2): 121-125. DOI: 10.1002/cbf.1006.
131. Amin AH, El-Missiry MA, Othman AI (2015) Melatonin ameliorates metabolic risk factors, modulates apoptotic proteins, and protects the rat heart against diabetes-induced apoptosis. Eur. J. Pharmacol. 747: 166-173. DOI: 10.1016/j.ejphar.2014.12.002.
132. Bahrami M, Cheraghpour M, Jafarirad S, Alavinejad P, Cheraghian B (2019) The role of melatonin supplement in metabolic syndrome: A randomized double blind clinical trial. Nutr. Food Sci. 49 (5): 965-977. DOI: 10.1108/NFS-01-2019-0018.
133. Goyal A, Terry PD, Superak HM, Nell-Dybdahl CL, Chowdhury R, Phillips LS, Kutner MH (2014) Melatonin supplementation to treat the metabolic syndrome: a randomized controlled trial. Diabetol. Metab. Syndr. 6 (1): 1-1. DOI: 10.1186/1758-5996-6-124.
134. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030 (2010) Diabetes Res. Clin. Pract. 87 (1): 4-14. DOI: 10.1016/j.diabres.2009.10.007.
135. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE (2014) Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103 (2): 137-149. DOI: 10.1016/j.diabres.2013.11.002.
136. Teodoro BG, Baraldi FG, Sampaio IH, Bomfim LH, Queiroz AL, Passos MA, Carneiro EM, Alberici LC, Gomis R, Amaral FG, Cipolla‐Neto J (2014) Melatonin prevents mitochondrial dysfunction and insulin resistance in rat skeletal muscle. J. Pineal Res. 57 (2): 155-167. DOI: 10.1111/jpi.12157.
137. Ha E, Yim SV, Chung JH, Yoon KS, Kang I, Cho YH, Baik HH (2006) Melatonin stimulates glucose transport via insulin receptor substrate‐1/phosphatidylinositol 3‐kinase pathway in C2C12 murine skeletal muscle cells. J. Pineal Res. 41 (1): 67-72. DOI: 10.1111/j.1600-079X.2006.00334.x.
138. Lima FB, Matsushita DH, Hell NS, Dolnikoff MS, Okamoto MM (1994) The regulation of insulin action in isolated adipocytes. Role of the periodicity of food intake, time of day and melatonin. Braz. J. Med. Biol. Res. 27 (4): 995-1000. PMID: 8087099.
139. Chen J, Xia H, Zhang L, Zhang H, Wang D, Tao X (2019) Protective effects of melatonin on sepsis-induced liver injury and dysregulation of gluconeogenesis in rats through activating SIRT1/STAT3 pathway. Biomed. Pharmacother. 117: 109150. DOI: 10.1016/j.biopha.2019.109150.
140. Rodrigues SC, Pantaleão L, Lellis‐Santos C, Veras K, Amaral F, Anhê G, Bordin S (2013) Increased corticosterone levels contribute to glucose intolerance induced by the absence of melatonin. Feder Am Soc Exp Biol. 27 (S1): 1161. DOI: 10.1096/fasebj.27.1_supplement.1161.1.
141. Pourhanifeh MH, Hosseinzadeh A, Dehdashtian E, Hemati K, Mehrzadi S (2020) Melatonin: new insights on its therapeutic properties in diabetic complications. Diabetol. Metab. Syndr. 12 (1): 1-20. DOI: 10.1186/s13098-020-00537-z.
142. Sanchez‐Campos S, Arévalo M, Mesonero MJ, Esteller A, González‐Gallego J, Collado PS (2001) Effects of melatonin on fuel utilization in exercised rats: role of nitric oxide and growth hormone. J. Pineal Res. 31 (2): 159-166. DOI: 10.1034/j.1600-079x.2001.310210.x.
143. Kushnir OY, Yaremii IM, Shvetsv VI, Shvets NV (2017) Influence of melatonin on carbohydrate metabolism in the kidney of alloxan diabetic rats. Fiziol Zh. 63 (4): 64-71.
144. Liu W, Zhang Y, Chen Q, Liu S, Xu W, Shang W, Wang L, Yu J (2020) Melatonin alleviates glucose and lipid metabolism disorders in Guinea pigs caused by different artificial light rhythms. J. Diab. Res. 2020: 4927403. DOI: 10.1155/2020/4927403.
145. Nishida S, Segawa T, Murai I, Nakagawa S (2002) Long‐term melatonin administration reduces hyperinsulinemia and improves the altered fatty‐acid compositions in type 2 diabetic rats via the restoration of Δ‐5 desaturase activity. J. Pineal Res. 32 (1): 26-33. DOI: 10.1034/j.1600-079x.2002.10797.x.
146. Chen X, Zhang C, Zhao M, Shi CE, Zhu RM, Wang H, Zhao H, Wei W, Li JB, Xu DX (2011) Melatonin alleviates lipopolysaccharide‐induced hepatic SREBP‐1c activation and lipid accumulation in mice. J. Pineal Res. 51 (4): 416-425. DOI: 10.1111/j.1600-079X.2011.00905.x.
147. Mi Y, Tan D, He Y, Zhou X, Zhou Q, Ji S (2018) Melatonin modulates lipid metabolism in HepG2 cells cultured in high concentrations of oleic acid: AMPK pathway activation may play an important role. Cell Biochem. Biophys. 76 (4): 463-470. DOI: 10.1007/s12013-018-0859-0.
148. Frese T, Bach AG, Mühlbauer E, Pönicke K, Brömme HJ, Welp A, Peschke E (2009) Pineal melatonin synthesis is decreased in type 2 diabetic Goto–Kakizaki rats. Life Sci. 85 (13-14): 526-533. DOI: 10.1016/j.lfs.2009.08.004.
149. Amaral FG, Turati AO, Barone M, Scialfa JH, do Carmo Buonfiglio D, Peres R, Peliciari‐Garcia RA, Afeche SC, Lima L, Scavone C, Bordin S, Reiter RJ, Menna-Barreto L, Cipolla-Neto J (2014) Melatonin synthesis impairment as a new deleterious outcome of diabetes‐derived hyperglycemia. J. Pineal Res. 57 (1): 67-79. DOI: 10.1111/jpi.12144.
150. Karlsson B, Knutsson A, Lindahl B (2001) Is there an association between shift work and having a metabolic syndrome? Results from a populationbased study of 27 485 people. Occup. Environ. Med. 58 (11): 747-752. DOI: 10.1136/oem.58.11.747.
151. Thomas AP, Hoang J, Vongbunyong K, Nguyen A, Rakshit K, Matveyenko AV (2016) Administration of melatonin and metformin prevents deleterious effects of circadian disruption and obesity in male rats. Endocrinology 157 (12): 4720-4731. DOI: 10.1210/en.2016-1309.
152. Banerjee A, Chattopadhyay A, Bandyopadhyay D (2020) Biorhythmic and receptor mediated interplay between melatonin and insulin: its consequences on diabetic erythrocytes. Melatonin. Res. 3 (2): 243-263. DOI: 10.32794/mr12250060.
153. Peschke E, Peschke D (1998) Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia 41 (9): 1085-1092. DOI: 10.1007/s001250051034.
154. Scheer FA, Hilton MF, Mantzoros CS, Shea SA (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl. Acad. Sci. 106 (11): 4453-4458. DOI: 10.1073/pnas.0808180106.
155. Espino J, Pariente JA, Rodríguez AB (2011) Role of melatonin on diabetes-related metabolic disorders. World J. Diabetes 2 (6): 82. DOI: 10.4239/wjd.v2.i6.82.
156. Knutson KL, Ryden AM, Mander BA, Van Cauter E (2006) Role of sleep duration and quality in the risk and severity of type 2 diabetes mellitus. Arch. Intern. Med. 166 (16): 1768-1774. DOI: 10.1001/archinte.166.16.1768.
157. Laposky AD, Bass J, Kohsaka A, Turek FW (2008) Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS lett. 582 (1): 142-151. DOI: 10.1016/j.febslet.2007.06.079.
158. La Fleur SE, Kalsbeek A, Wortel J, Van Der Vliet J, Buijs RM (2001) Role for the pineal and melatonin in glucose homeostasis: pinealectomy increases night‐time glucose concentrations. J. Neuroendocrinol. 13 (12): 1025-1032. DOI: 10.1046/j.1365-2826.2001.00717.x.
159. Diaz B, Blazquez E (1986) Effect of pinealectomy on plasma glucose, insulin and glucagon levels in the rat. Horm. Metab. Res. 18 (04): 225-229. DOI: 10.1055/s-2007-1012279.
160. Rodríguez V, Mellado C, Alvarez E, De Diego JG, Blázquez E (1989) Effect of pinealectomy on liver insulin and glucagon receptor concentrations in the rat. J. Pineal Res. 6 (1): 77-88. DOI: 10.1111/j.1600-079X.1989.tb00405.x.
161. Contreras‐Alcantara S, Baba K, Tosini G (2010) Removal of melatonin receptor type 1 induces insulin resistance in the mouse. Obesity 18 (9): 1861-1863. DOI: 10.1038/oby.2010.24.
162. Fonken LK, Weil ZM, Nelson RJ (2013) Dark nights reverse metabolic disruption caused by dim light at night. Obesity 21 (6): 1159-1164. DOI: 10.1002/oby.20108.
163. Nogueira TC, Lellis-Santos C, Jesus DS, Taneda M, Rodrigues SC, Amaral FG, Lopes AM, Cipolla-Neto J, Bordin S, Anhê GF (2011) Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinology 152 (4): 1253-1263. DOI: 10.1210/en.2010-1088.
164. Agil A, Rosado I, Ruiz R, Figueroa A, Zen N, Fernández‐Vázquez G (2012) Melatonin improves glucose homeostasis in young Zucker diabetic fatty rats. J. Pineal Res. 52 (2): 203-210. DOI: 10.1111/j.1600-079X.2011.00928.x.
165. Nduhirabandi F, Du Toit EF, Blackhurst D, Marais D, Lochner A (2011) Chronic melatonin consumption prevents obesity‐related metabolic abnormalities and protects the heart against myocardial ischemia and reperfusion injury in a prediabetic model of diet‐induced obesity. J. Pineal Res. 50 (2): 171-182. DOI: 10.1111/j.1600-079X.2010.00826.x.
166. Alonso‐Vale MI, Andreotti S, Mukai PY, Borges‐Silva CD, Peres SB, Cipolla‐Neto J, Lima FB (2008) Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J. Pineal Res. 45 (4): 422-429. DOI: 10.1111/j.1600-079X.2008.00610.x.
167. O'brien IA, Lewin IG, O'hare JP, Arendt J, Corrall RJ (1986) Abnormal circadian rhythm of melatonin in diabetic autonomic neuropathy. Clin. Endocrinol. 24 (4): 359-364. DOI: 10.1111/j.1365-2265.1986.tb01639.x.
168. Morgan LM, Aspostolakou F, Wright J, Gama R (1999) Diurnal variations in peripheral insulin resistance and plasma non-esterified fatty acid concentrations: a possible link? Ann. Clin. Biochem. 36 (4): 447-450. DOI: 10.1177/000456329903600407.
169. Onaolapo AY, Onaolapo OJ (2018) Circadian dysrhythmia-linked diabetes mellitus: Examining melatonin’s roles in prophylaxis and management. World J. Diabetes 9 (7): 99-114. DOI: 10.4239/wjd.v9.i7.99.
170. Yu LM, Dong X, Xue XD, Xu S, Zhang X, Xu YL, Wang ZS, Wang Y, Gao H, Liang YX, Yang Y (2021) Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia‐reperfusion injury by improving mitochondrial quality control: Role of SIRT6. J. Pineal Res. 70 (1): e12698. DOI: 10.1111/jpi.12698.
171. Hu Y, Suarez J, Fricovsky E, Wang H, Scott BT, Trauger SA, Han W, Hu Y, Oyeleye MO, Dillmann WH (2009) Increased enzymatic O-GlcNAcylation of mitochondrial proteins impairs mitochondrial function in cardiac myocytes exposed to high glucose. J. Biol. Chem. 284 (1): 547-555. DOI: 10.1074/jbc.M808518200.
172. Song YJ, Zhong CB, Wu W (2020) Cardioprotective effects of melatonin: Focusing on its roles against diabetic cardiomyopathy. Biomed. Pharmacother. 128: 110260. DOI: 10.1016/j.biopha.2020.110260.
173. Nduhirabandi F, Huisamen B, Strijdom H, Lochner A (2017) Role of melatonin in glucose uptake by cardiomyocytes from insulin-resistant Wistar rats. Cardiovasc. J. Afr. 28 (6): 362-369. DOI: https://hdl.handle.net/10520/EJC-b2b7bfd2b.
174. Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y, Meng D, Li B, Zhang M (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Sci. Rep. 7 (1): 1-3. DOI: 10.1038/srep41337.
175. Amaral N, Okonko DO (2015) Metabolic abnormalities of the heart in type II diabetes. Diab. Vasc. Dis. Res. 12 (4): 239-248. DOI: 10.1177/1479164115580936.
176. Watanabe K, Fujii H, Takahashi T, Kodama M, Aizawa Y, Ohta Y, Ono T, Hasegawa G, Naito M, Nakajima T, Kamijo Y (2000) Constitutive regulation of cardiac fatty acid metabolism through peroxisome proliferator-activated receptor α associated with age-dependent cardiac toxicity. J. Biol. Chem. 275 (29): 22293-22299. DOI: 10.1074/jbc.M000248200.
177. Ferré P (2004) The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes 53 (suppl_1): S43-S50. DOI: 10.2337/diabetes.53.2007.S43.
178. Huang K, Luo X, Zhong Y, Deng L, Feng J (2022) New insights into the role of melatonin in diabetic cardiomyopathy. Pharmacol. Res. Perspect. 10 (1): e00904. DOI: 10.1002/prp2.904.
179. Lyssenko V, Nagorny CL, Erdos MR, Wierup N, Jonsson A, Spégel P, Bugliani M, Saxena R, Fex M, Pulizzi N, Isomaa B (2009) Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 41 (1): 82-88. DOI: 10.1038/ng.288.
180. Garaulet M, Gómez-Abellán P, Rubio-Sastre P, Madrid JA, Saxena R, Scheer FA (2015) Common type 2 diabetes risk variant in MTNR1B worsens the deleterious effect of melatonin on glucose tolerance in humans. Metabolism 64 (12): 1650-1657. DOI: 10.1016/j.metabol.2015.08.003.
181. Zhao Y, Xu L, Ding S, Lin N, Ji Q, Gao L, Su Y, He B, Pu J (2017) Novel protective role of the circadian nuclear receptor retinoic acid‐related orphan receptor‐α in diabetic cardiomyopathy. J. Pineal Res. 62 (3): e12378. DOI: 10.1111/jpi.12378.
Published
2022-06-30
How to Cite
[1]
Banerjee, A., Chattopadhyay, A. and Bandyopadhyay, D. 2022. Prevention of diabetic cardiomyopathy through metabolic amendments of myocardium by melatonin: a role beyond antioxidative efficiency. Melatonin Research. 5, 2 (Jun. 2022), 133-153. DOI:https://doi.org/https://doi.org/10.32794/mr112500125.

Most read articles by the same author(s)

1 2 > >>