Melatonin in the evolution of plants and other phototrophs

Melatonin and plant evolution

  • Ruediger Hardeland Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Germany
Keywords: algae, bacteria, chloroplasts, circadian, melatonin, meta-algae, mitochondria, plants

Abstract


Melatonin is present in numerous phototrophic eukaryotes, not only in plants in the meaning of Archaeplastida or of Viridiplantae. It is also formed in members of other superclades, such as Excavata and SAR clade. Typically, their respective phototrophs have acquired chloroplasts from phototrophic eukaryotes, either by taking them up as endosymbionts or by chloroplast capturing. It has been the aim of this overview to trace the phylogenetic relationships between the various phototrophs according to actual, genetically based taxonomy. This includes the consideration of primary heterotrophs that also exist within the same groups and some secondary heterotrophs that have lost functional chloroplasts. The presence of melatonin in these different taxa is discussed under the aspects of its cyanobacterial or α-proteobacterial origins, as transmitted by plastidial or mitochondrial ancestors, or by horizontal gene transfer. Peculiarities of melatonin metabolism that have evolved in some of these groups are also addressed.



References

1. Hardeland R, Fuhrberg B (1996) Ubiquitous melatonin – Presence and effects in unicells, plants and animals. Trends Comp. Biochem. Physiol. 2: 25-45.
2. Hardeland R, Poeggeler B (2003) Non-vertebrate melatonin. J. Pineal Res. 34: 233-241. doi: 10.1034/j.1600-079X.2003.00040.x.
3. Tan, D-X, Hardeland R, Manchester LC, et al. (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. Camb. Philos. Soc. 85: 607-623. doi: 10.1111/j.1469-185X.2009.00118.x.
4. Tan D-X, Reiter RJ (2019) Mitochondria: the birth place, battle ground and site of melatonin metabolism in cells. Melatonin Res. 2: 44-66. doi: 10.32794/mr11250011.
5. Biarrotte-Sorin S, Mayer C (2005) Cloning, purification, crystallization and preliminary crystallographic analysis of a hypothetical acetyltransferase from Pyrococcus furiosus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 (Pt 3): 269-270. doi: 10.1107/S174430910500223X.
6. Ma C, Pathak C, Jang S, et al. (2014) Structure of Thermoplasma volcanium Ard1 belongs to N-acetyltransferase family member suggesting multiple ligand binding modes with acetyl coenzyme A and coenzyme A. Biochim. Biophys. Acta 1844: 1790-1797. doi: 10.1016/j.bbapap.2014.07.011.
7. Hardeland R, Balzer I, Poeggeler B, et al. (1995) On the primary functions of melatonin in evolution: mediation of photoperiodic signals in a unicell, photooxidation, and scavenging of free radicals. J. Pineal Res. 18: 104-111. doi: 10.1111/j.1600-079X.1995.tb00147.x.
8. Tan D-X, Chen L-D, Poeggeler B, et al. (1993) Melatonin: a potent, endogenous hydroxyl radical scavenger. Endocr. J. 1: 57-60.
9. Tan D-X, Reiter RJ, Manchester LC, et al. (2002) Chemical and physical properties and potential mechanisms: melatonin as a broad spectrum antioxidant and free radical scavenger. Curr. Top. Med. Chem. 2: 181-197. doi: 10.2174/1568026023394443.
10. Hardeland R, Pandi-Perumal SR, Cardinali DP (2006) Melatonin. Int. J. Biochem. Cell Biol. 38: 313-316. doi: 10.1016/j.biocel.2005.08.020.
11. Pandi-Perumal SR, Srinivasan V, Maestroni GJM, et al. (2006) Melatonin – Nature’s most versatile biological signal? FEBS J. 273: 2813-2838. doi: 10.1111/j.1742-4658.2006.05322.x.
12. Poeggeler B, Reiter RJ, Tan D-X, et al. (1993) Melatonin, hydroxyl radical-mediated oxidative damage, and aging: a hypothesis. J. Pineal Res. 14: 151-168. doi: 10.1111/j.1600-079X.1993.tb00498.x.
13. Hardeland R, Reiter RJ, Poeggeler B, et al. (1993) The significance of the metabolism of the neurohormone melatonin: antioxidative protection and formation of bioactive substances. Neurosci. Biobehav. Rev. 17: 347-357. doi: 10.1016/S0149-7634(05)80016-8.
14. Poeggeler B, Thuermann S, Dose A, et al. (2002) Melatonin's unique radical scavenging properties - roles of its functional substituents as revealed by a comparison with its structural analogs. J. Pineal Res. 33: 20-30. doi: 10.1034/j.1600-079X.2002.01873.x.
15. Hardeland R (2017) Taxon- and site-specific melatonin catabolism. Molecules 22: E2015. doi: 10.3390/molecules22112015.
16. Tan D-X, Manchester LC, Reiter RJ, et al. (1998) A novel melatonin metabolite, cyclic 3-hydroxymelatonin: a biomarker of in vivo hydroxyl radical generation. Biochem. Biophys. Res. Commun. 253: 614-620. doi: 10.1006/bbrc.1998.9826.
17. Tan D-X, Manchester LC, Reiter RJ, et al. (1999) Cyclic 3-hydroxymelatonin: a melatonin metabolite generated as a result of hydroxyl radical scavenging. Biol. Signals Recept. 8: 70-74. doi: 10.1159/000014571.
18. Hardeland R, Tan D-X, Reiter RJ (2009) Kynuramines, metabolites of melatonin and other indoles: the resurrection of an almost forgotten class of biogenic amines. J. Pineal Res. 47: 109-126. doi: 10.1111/j.1600-079X.2009.00701.x.
19. Tan D-X, Hardeland R, Manchester LC, et al. (2014) Cyclic-3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicals and suppresses oxidative reactions. Curr. Med. Chem. 21: 1557-1565. doi: 10.2174/0929867321666131129113146.
20. Burkhardt S, Reiter RJ, Tan D-X, et al. (2001) DNA oxidatively damaged by chromium(III) and H2O2 is protected by the antioxidants melatonin, N1-acetyl-N2-formyl-5-methoxykynuramine, resveratrol and uric acid. Int. J. Biochem. Cell Biol. 33: 775-783. doi: 10.1016/S1357-2725(01)00052-8.
21. Tan D-X, Manchester LC, Burkhardt S, et al (2001) N1-acetyl-N2-formyl-5-methoxykynuramine, a biogenic amine and melatonin metabolite, functions as a potent antioxidant. FASEB J. 15: 2294-2296. doi: 10.1096/fj.01-0309fje.
22. Rosen J, Than NN, Koch D, et al. (2006) Interactions of melatonin and its metabolites with the ABTS cation radical: extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J. Pineal Res. 41: 374-381. doi: 10.1111/j.1600-079X.2006.00379.x.
23. de Almeida EA. Martinez GR, Klitzke CF, et al. (2003) Oxidation of melatonin by singlet molecular oxygen (O2(1Δg)) produces N1-acetyl-N2-formyl-5-methoxykynurenine. J. Pineal Res. 35: 131-137. doi: 10.1034/j.1600-079X.2003.00066.x.
24. Hardeland R, Poeggeler B, Balzer I, et al. (1993) A hypothesis on the evolutionary origins of photoperiodism based on circadian rhythmicity of melatonin in phylogenetically distant organisms. In: Chronobiology & Chronomedicine (Gutenbrunner C, Hildebrandt G, Moog R, eds.), Lang, Frankfurt/M. - Berlin - Bern - New York - Paris - Vienna, pp. 113-120.
25. Behrmann G, Fuhrberg B, Hardeland R, et al. (1997) Photooxidation of melatonin, 5-methoxytryptamine and 5-methoxytryptophol: aspects of photoprotection by periodically fluctuating molecules? Biometeorology 14, Pt. 2/2: 258-263.
26. Schaefer M, Hardeland R (2009) The melatonin metabolite N1-acetyl-5-methoxykynuramine is a potent singlet oxygen scavenger. J Pineal Res. 46: 49-52. doi: 10.1111/j.1600-079X.2008.00614.x.
27. Hardeland R, Poeggeler B, Balzer I, et al. (1991) Common basis of photoperiodism in phylogenetically distant organisms and its possible origins. J. Interdiscipl. Cycle Res. 22: 122-123. doi: 10.1080/09291019109360102.
28. Manchester LC, Poeggeler B, Alvares FL, et al. (1995) Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: Implications for an ancient antioxidant system. Cell. Mol. Biol. Res. 41: 391-395.
29. Tilden AR, Becker MA, Amma LL, et al. (1997) Melatonin production in an aerobic photosynthetic bacterium: an evolutionarily early association with darkness. J. Pineal Res. 22: 102-106. doi: 10.1111/j.1600-079X.1997.tb00310.x
30. Balzer I, Höcker B, Kapp H, et al. (2000) Occurrence and comparative physiology of melatonin in evolutionary diverse organisms. In: The Redox State and Circadian Rhythms (Vanden Driessche T, Guisset J-L, Pertieau-de Vries, GM, eds.), Kluwer, Dordrecht – Boston – London, pp. 95-119.
31. Hattori A, Wada M, Majima A, et al. (1999) Detection of melatonin and synthesizing enzyme activities in cyanobacterium, Spirulina platensis. Proc. Jpn. Soc. Comp. Endocrinol. 14: 49.
32. Majima A, Hattori A, Wada M, et al. (1999) Dynamic release of melatonin in cyanobacterium, Spirulina platensis. Proc. Jpn. Soc. Comp. Endocrinol. 14: 50.
33. Back K, Tan D-X, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J. Pineal Res. 61: 426-437. doi: 10.1111/jpi.12364.
34. Byeon Y, Lee K, Park Y-I, et al. (2013) Molecular cloning and functional analysis of serotonin N-acetyltransferase from the cyanobacterium Synechocystis sp. PCC 6803. J. Pineal Res. 55: 371-376. doi: 10.1111/jpi.12080.
35. Byeon Y, Lee HY, Lee K, et al. (2014) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J. Pineal Res. 56: 107-114. doi: 10.1111/jpi.12103.
36. Wang L, Feng C, Zheng X, et al (2017) Plant mitochondria synthesize melatonin and enhance the tolerance of plants to drought stress. J. Pineal Res. 63: e12429. doi: 10.1111/jpi.12429.
37. Tan D-X, Manchester LC, Liu X, et al. (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J. Pineal Res. 54: 127-138. doi: 10.1111/jpi.12026.
38. Tan D-X, Zheng X, Kong J, et al. (2014) Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int. J. Mol. Sci. 15: 15858-15890. doi: 10.3390/ijms150915858.
39. Coon SL, Klein DC (2006) Evolution of arylalkylamine N-acetyltransferase: emergence and divergence. Mol. Cell. Endocrinol. 252: 2-10. doi: 10.1016/j.mce.2006.03.039.
40. Suofu Y, Li W, Jean-Alphonse FG, et al. (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA 114: E7997-E8006. doi: 10.1073/pnas.1705768114.
41. Abhishek A, Bavishi A, Bavishi A, et al. (2011) Bacterial genome chimaerism and the origin of mitochondria. Can. J. Microbiol. 57: 49-61. doi: 10.1139/w10-099.
42. Torrens-Spence MP, Liu P, Ding H, et al. (2013) Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. J. Biol. Chem. 288: 2376-2387. doi: 10.1074/jbc.M112.401752.
43. Han Q, Robinson H, Ding H, et al. (2012) Evolution of N-acetyltransferases: structural evidence from the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 109: 11669-11674. doi: 10.1073/pnas.1206828109.
44. Hiragaki S, Suzuki T, Mohamed AA, et al. (2015) Structures and functions of insect arylalkylamine N-acetyltransferase (iaaNAT), a key enzyme for physiological and behavioral switch in arthropods. Front. Physiol. 6: 113. doi: 10.3389/fphys.2015.00113.
45. Slominski A, Fischer TW, Zmijewski MA, et al. (2005) On the role of melatonin in skin physiology and pathology. Endocrine 27: 137-148. doi: 10.1385/ENDO:27:2:137.
46. Dang H, Lovell CR (2015) Microbial surface colonization and biofilm development in marine environments. Microbiol. Mol. Biol. Rev. 80: 91-138. doi: 10.1128/MMBR.00037-15.
47. Kamekura M (1998) Diversity of extremely halophilic bacteria. Extremophiles 2: 289-295.
48. Oren A (2014) Taxonomy of halophilic Archaea: current status and future challenges. Extremophiles 18: 825-834. doi: 10.1007/s00792-014-0654-9.
49. Spang A, Stairs CW, Dombrowski N, et al. (2019) Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. [Epub ahead of print, Apr 1]. doi: 10.1038/s41564-019-0406-9.
50. Schwartzbach SD, Osafune T, Löffelhardt W (1998) Protein import into cyanelles and complex chloroplasts. Plant Mol. Biol. 38: 247-263.
51. Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos. Trans. R. Soc. Lond. B Biol. Sci. 358: 109-133. doi: 10.1098/rstb.2002.1194.
52. Figueroa RI, Bravo I, Fraga S, et al. (2009) The life history and cell cycle of Kryptoperidinium foliaceum, a dinoflagellate with two eukaryotic nuclei. Protist 160: 285-300. doi: 10.1016/j.protis.2008.12.003.
53. Archibald JM (2009) The puzzle of plastid evolution. Curr. Biol. 19: R81-R88. doi: 10.1016/j.cub.2008.11.067.
54. Moore RB, Oborník M, Janouškovec J, et al. (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451: 959-963. doi: 10.1038/nature06635.
55. Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr. Biol. 18: 410-418. doi: 10.1016/j.cub.2008.02.051.
56. Prechtl J, Kneip C, Lockhart P, et al. (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol. Biol. Evol. 21: 1477-1481. doi: 10.1093/molbev/msh086.
57. Balzer I, Fuhrberg B, Hardeland R (1996) The neurohormone melatonin oscillates in a circadian fashion already in unicells. In: Brain and Evolution (Elsner N., Schnitzler H-U, eds.), Thieme, Stuttgart - New York, p. 228.
58. Hardeland R (1999) Melatonin and 5-methoxytryptamine in non-metazoans. Reprod. Nutr. Dev. 39: 399-408. doi: 10.1051/rnd:19990311.
59. Macías M, Rodríguez-Cabezas MN, Reiter RJ, et al. (1999) Presence and effects of melatonin in Trypanosoma cruzi. J. Pineal Res. 27: 86-94. doi: 10.1111/j.1600-079X.1999.tb00601.x.
60. Bernhard JM, Bowser SS (1999) Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth Sci. Rev. 46: 149-165. doi: 10.1016/S0012-8252(99)00017-3.
61. Fuhrberg B, Balzer I, Hardeland R, et al. (1996) The vertebrate pineal hormone melatonin is produced by the brown alga Pterygophora californica and mimics dark effects on growth rate in the light. Planta 200: 125-131. doi: 10.1007/BF00196659.
62. Hardeland R (2015) Melatonin in plants and other phototrophs – advances and gaps concerning the diversity of functions. J. Exp. Bot. 66: 627-646. doi: 10.1093/jxb/eru386.
63. Hardeland R (2016) Melatonin in plants - diversity of levels and multiplicity of functions. Front. Plant Sci. 7: 198. doi: 10.3389/fpls.2016.00198.
64. Pape C (2004) Melatoningehalt in marinen Makroalgen. Entwicklung und Validierung quantitativer Bestimmungen mittels HPLC und Enzym-gekoppeltem Immunoassay. Ber. Polar Meeresforsch. 473. doi: 10.2312/BzPM_0473_2004.
65. Zhang S, Zheng X, Reiter RJ, et al. (2017) Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Front. Plant Sci. 8: 1993. doi: 10.3389/fpls.2017.01993.
66. Zhang S, Liu S, Zhang J, et al. (2018) Synergistic anti-oomycete effect of melatonin with a biofungicide against oomycetic black shank disease. J. Pineal Res. 65: e12492. doi: 10.1111/jpi.12492.
67. Botté CY, Yamaryo-Botté Y (2018) Complex endosymbioses II: The nonphotosynthetic plastid of Apicomplexa parasites (the apicoplast) and its integrated metabolism. Methods Mol. Biol. 1829: 37-54. doi: 10.1007/978-1-4939-8654-5_3.
68. Kadian K, Gupta Y, Singh HV, et al. (2018) Apicoplast metabolism: Parasite's Achilles' heel. Curr. Top. Med. Chem. 18: 1987-1997. doi: 10.2174/1568026619666181130134742.
69. Bagnaresi P, Nakabashi M, Thomas AP, et al (2012) The role of melatonin in parasite biology. Mol. Biochem. Parasitol. 181: 1-6. doi: 10.1016/j.molbiopara.2011.09.010.
70. Putt M (1990) Abundance, chlorophyll content and photosynthetic rates of ciliates in the Nordic Seas during summer. Deep Sea Res. A Oceanogr. Res. 37: 1713-1731. doi: 10.1016/0198-0149(90)90073-5.
71. Laybourn-Parry J, Perriss SJ, Seaton GGR, et al. (1997) A mixotrophic ciliate as a major contributor to plankton photosynthesis in Australian lakes. Limnol. Oceanogr. 42: 1463-1467.
72. Sanders RW (1995) Seasonal distributions of the photosynthesizing ciliates Laboea strobila and Myrionecta rubra (= Mesodinium rubrum) in an estuary of the Gulf of Maine. Aquat. Microb. Ecol. 9: 237-242.
73. Köhidai L, Vakkuri O, Keresztesi M, et al. (2002) Melatonin in the unicellular Tetrahymena pyriformis: effects of different lighting conditions. Cell Biochem. Funct. 20: 269-272.
74. Köhidai L, Vakkuri O, Keresztesi M, et al. (2003) Induction of melatonin synthesis in Tetrahymena pyriformis by hormonal imprinting--a unicellular "factory" of the indoleamine. Cell. Mol. Biol. (Noisy-le-grand) 49: 521-524.
75. Poeggeler B, Hardeland R (2001) Observations on melatonin oxidation and metabolite release by unicellular organisms and small aquatic metazoans. In: Actions and Redox Properties of Melatonin and Other Aromatic Amino Acid Metabolites (Hardeland R, ed.), Cuvillier, Göttingen, pp. 66-69.
76. Poeggeler B, Balzer I, Fischer J, et al. (1989) A role of melatonin in dinoflagellates? Acta Endocrinol. (Cop.) 120: Suppl. 1: 97.
77. Poeggeler B, Balzer I, Hardeland R, et al. (1991) Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 78: 268-269.
78. Balzer I, Poeggeler B, Hardeland R (1993) Circadian rhythms of indoleamines in a dinoflagellate, Gonyaulax polyedra: Persistence of melatonin rhythm in constant darkness and relationship to 5-methoxytryptamine. In: Melatonin and the Pineal Gland - From Basic Science to Clinical Application (Touitou Y, Arendt J, Pévet P, eds.), Excerpta Medica, Amsterdam - London – New York - Tokyo, pp. 183-186.
79. Roopin M, Yacobi YZ, Levy O (2013) Occurrence, diel patterns, and the influence of melatonin on the photosynthetic performance of cultured Symbiodinium. J. Pineal Res. 55: 89-100. doi: 10.1111/jpi.12046.
80. Dunlap JC, Hastings JW (1981) The biological clock in Gonyaulax controls luciferase activity by regulating turnover. J. Biol. Chem. 256: 10509-10518.
81. Hardeland R, Pandi-Perumal SR, Poeggeler B (2007) Melatonin in plants – Focus on a vertebrate night hormone with cytoprotective properties. Funct. Plant Sci. Biotechnol. 1: 32-45.
82. Balzer I, Hardeland R (1991) Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Science 253: 795-797. doi: 10.1126/science.1876838.
83. Hardeland R (1994) Induction of cyst formation by low temperature in the dinoflagellate Gonyaulax polyedra Stein: dependence on circadian phase and requirement of light. Experientia 50: 60-62.
84. Roenneberg T, Rehman J (1996) Nitrate, a nonphotic signal for the circadian system. FASEB J. 10: 1443-1447. doi: 10.1096/fasebj.10.12.8903515.
85. Fuhrberg B, Hardeland R, Poeggeler B, et al. (1997) Dramatic rises of melatonin and 5-methoxytryptamine in Gonyaulax exposed to decreased temperature. Biol. Rhythm Res. 28: 144-150. doi: 10.1076/brhm.28.1.144.12978.
86. Fuhrberg B, Hardeland R (1997) Temperature as a major environmental factor controlling levels and rhythm amplitudes of melatonin in the marine dinoflagellate Gonyaulax polyedra. Biometeorology 14, Pt. 2/2: 272-277.
87. Hardeland R, Hoppenrath M (2012) Bioluminescence in dinoflagellates. Tree of Life; http://tolweb.org/articles/?article_id=5621.
88. Hardeland R, Mbachu EM, Fuhrberg B (1999) Asexual cyst induction in dinoflagellates: Differences in encystment competence do not generally correspond with responsiveness to 5-methoxytryptamine. In: Studies on Antioxidants and their Metabolites (Hardeland R, ed.), Cuvillier, Göttingen, pp. 177-183.
89. Wong JTY, Wong YH (1994) Indoleamine-induced encystment in dinoflagellates. J. Mar. Biol. Assoc. U.K. 74: 467-469. doi: 10.1017/S0025315400039515.
90. Tsim ST, Wong JT, Wong YH (1997) Calcium ion dependency and the role of inositol phosphates in melatonin-induced encystment of dinoflagellates. J. Cell Sci. 110: 1387-1393.
91. Tsim ST, Wong JT, Wong YH (1998) Regulation of calcium influx and phospholipase C activity by indoleamines in dinoflagellate Crypthecodinium cohnii. J. Pineal Res. 24: 152-161. doi: 10.1111/j.1600-079X.1998.tb00528.x.
92. Hardeland R (1999) Indoleamine-induced encystment in dinoflagellates: On the problems of distinguishing between proton and calcium effects. In: Studies on Antioxidants and their Metabolites (Hardeland R, ed.), Cuvillier, Göttingen, pp. 184-190.
93. Balzer I, Hardeland R (1991) Stimulation of bioluminescence by 5-methoxylated indoleamines in the dinoflagellate, Gonyaulax polyedra. Comp. Biochem. Physiol. 98 C: 395-397.
94. Slominski AT, Kim TK, Takeda Y, et al. (2014) RORα and RORγ are expressed in human skin and serve as receptors for endogenously produced noncalcemic 20-hydroxy- and 20,23-dihydroxyvitamin D. FASEB J. 28: 2775-2789. doi: 10.1096/fj.13-242040.
95. Slominski AT, Zmijewski MA, Jetten AM (2016) RORα is not a receptor for melatonin (response to DOI 10.1002/bies.201600018). Bioessays 38: 1193-1194. doi: 10.1002/bies.201600204.
96. Owen GI, Zelent A (2000) Origins and evolutionary diversification of the nuclear receptor superfamily. Cell. Mol. Life Sci. 57: 809-827. doi: 10.1007/s000180050043.
97. Hardeland R (2018) Melatonin and retinoid orphan receptors: Demand for new interpretations after their exclusion as nuclear melatonin receptors. Melatonin Res. 1: 77-92. doi: 10.32794/mr11250005.
98. Masson-Pévet M, Balzer I, Hardeland R (1997) Testing for melatonin receptors in Gonyaulax polyedra. In: Biological Rhythms and Antioxidative Protection (Hardeland R, ed.), Cuvillier, Göttingen, pp. 107-109.
99. Mbachu EM, Hardeland R (1999) Effects of mastoparan on bioluminescence in Gonyaulax spinifera. In: Studies on Antioxidants and their Metabolites (Hardeland R, ed.), Cuvillier, Göttingen, pp. 172-176.
100. Mueller U, Hardeland R (1999) Transient accumulations of exogenous melatonin indicate binding sites in the dinoflagellate Gonyaulax polyedra. In: Studies on Antioxidants and their Metabolites (Hardeland R, ed.), Cuvillier, Göttingen, pp. 140-147.
101. Antolín I, Obst B, Burkhardt S, et al (1997) Antioxidative protection in a high-melatonin organism: The dinoflagellate Gonyaulax polyedra is rescued from lethal oxidative stress by strongly elevated, but physiologically possible concentrations of melatonin. J. Pineal Res. 23: 182-190. doi: 10.1111/j.1600-079X.1997.tb00353.x.
102. Hardeland R, Coto-Montes A, Burkhardt S, et al. (2000) Circadian rhythms and oxidative stress in non-vertebrate organisms. In: The Redox State and Circadian Rhythms (Vanden Driessche T, Guisset J-L, Petiau-de Vries G, eds.), Kluwer, Dordrecht - Boston - London, pp. 121-140.
103. Antolín I, Hardeland R (1997) Suppression of the Gonyaulax glow peak by paraquat and its restoration by melatonin. In: Biological Rhythms and Antioxidative Protection (Hardeland R, ed.), Cuvillier, Göttingen, pp. 86-97.
104. Hardeland R, Burkhardt S, Antolín I, et al. (1999) Melatonin and 5-methoxytryptamine in the bioluminescent dinoflagellate Gonyaulax polyedra: Restoration of the circadian glow peak after suppression of indoleamine biosynthesis or oxidative stress. Adv. Exp. Med. Biol. 460: 387-390.
105. Hardeland R, Coto-Montes A (2000) Chronobiology of oxidative stress and anti-oxidative defense mechanisms. In: Recent Research Developments in Comparative Biochemistry and Physiology, Vol. 1 (Pandalai SG, ed.), Transworld Research Network, Trivandrum, pp. 123-137.
106. Chen G, Huo Y, Tan D-X, et al. (2003) Melatonin in Chinese medicinal herbs. Life Sci. 73: 19-26. doi: 10.1016/S0024-3205(03)00252-2.
107. Byeon Y, Yool Lee H, Choi DW, et al. (2015) Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts. J. Exp. Bot. 66: 709-717. doi: 10.1093/jxb/eru357.
108. Okazaki M, Higuchi K, Hanawa Y, et al. (2009) Cloning and characterization of a Chlamydomonas reinhardtii cDNA arylalkylamine N-acetyltransferase and its use in the genetic engineering of melatonin content in the Micro-Tom tomato. J. Pineal Res. 46: 373-82. doi: 10.1111/j.1600-079X.2009.00673.x.
109. Pape C, Lüning K (2006) Quantification of melatonin in phototrophic organisms. J. Pineal Res. 41: 157-165. doi: 10.1111/j.1600-079X.2006.00348.x.
110. Tal O, Haim A, Harel O, et al. (2011) Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp. J. Exp. Bot. 62: 1903-1910. doi: 10.1093/jxb/erq378.
111. Widyaningsih W, Pramono S, Zulaela, et al. (2017) Protection by ethanolic extract from Ulva lactuca L. against acute myocardial infarction: antioxidant and antiapoptotic activities. Malays. J. Med. Sci. 24: 39-49. doi: 10.21315/mjms2017.24.6.5.
112. Lazár D, Murch SJ, Beilby MJ, et al. (2013) Exogenous melatonin affects photosynthesis in characeae Chara australis. Plant Signal. Behav. 8: e23279. doi: 10.4161/psb.23279.
113. Park S, Byeon Y, Lee HY, et al. (2014) Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda). J. Pineal Res. 57: 348-355. doi: 10.1111/jpi.12174.
114. Conti A, Tettamanti C, Singaravel M, et al. (2002) Melatonin: an ubiquitous and evolutionary hormone. In: Treatise on Pineal Gland and Melatonin (Haldar C, Singaravel M, Maitra SK, eds.), Science Publishers, Enfield – Plymouth, pp. 105 - 143.
115. Reiter RJ, Tan D-X (2002) Melatonin: an antioxidant in edible plants. Ann. N.Y. Acad. Sci. 957: 341-344. doi: 10.1111/j.1749-6632.2002.tb02938.x.
116. Reiter RJ, Tan D-X, Burkhardt S, et al. (2001) Melatonin in plants. Nutr. Rev. 59: 286-290. doi: 10.1111/j.1753-4887.2001.tb07018.x.
117. Caniato R, Filippini R, Piovan A, et al. (2003) Melatonin in plants. Adv. Exp. Med. Biol. 527: 593-597.
118. Kolár J, Machácková I (2005) Melatonin in higher plants: occurrence and possible functions. J. Pineal Res. 39: 333-341. doi: 10.1111/j.1600-079X.2005.00276.x.
119. Arnao MB, Hernández-Ruiz J (2006) The physiological function of melatonin in plants. Plant Signal. Behav. 1: 89-95.
120. Reiter RJ, Tan D-X, Manchester LC, et al. (2007) Melatonin in edible plants (phytomelatonin): Identification, concentrations, bioavailability and proposed functions. World Rev. Nutr. Diet. 97: 211-230. doi: 10.1159/000097917.
121. Paredes SD, Korkmaz A, Manchester LC, et al. (2009) Phytomelatonin: a review. J. Exp. Bot. 60: 57-69. doi: 10.1093/jxb/ern284.
122. Tan D-X, Hardeland R, Manchester LC, et al. (2012) Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science. J. Exp. Bot. 63: 577-97. doi: 10.1093/jxb/err256.
123. Zhang N, Sun Q, Zhang H, et al. (2015) Roles of melatonin in abiotic stress resistance in plants. J. Exp. Bot. 66: 647-656. doi: 10.1093/jxb/eru336.
124. Reiter RJ, Tan D-X, Zhou Z, et al. (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20: 7396-7437. doi: 10.3390/molecules20047396.
125. Arnao MB, Hernández-Ruiz J (2015) Functions of melatonin in plants: a review. J. Pineal Res. 59: 133-150. doi: 10.1111/jpi.12253.
126. Kaur H, Mukherjee S, Baluska F, et al. (2015) Regulatory roles of serotonin and melatonin in abiotic stress tolerance in plants. Plant Signal. Behav. 10: e1049788. doi: 10.1080/15592324.2015.
127. Nawaz MA, Huang Y, Bie Z, et al. (2016) Melatonin: Current status and future perspectives in plant science. Front. Plant Sci. 6: 1230. doi: 10.3389/fpls.2015.01230.
128. Hardeland R (2016) Melatonin – another phytohormone? J. Bot. Sci. 5: 20-23.
129. Arnao MB, Hernández-Ruiz J (2018) Melatonin and its relationship to plant hormones. Ann. Bot. 121: 195-207. doi: 10.1093/aob/mcx114.
130. Wang Y, Reiter RJ, Chan Z (2018) Phytomelatonin: a universal abiotic stress regulator. J. Exp. Bot. 69: 963-974. doi: 10.1093/jxb/erx473.
131. Fan J, Xie Y, Zhang Z, et al. (2018) Melatonin: A multifunctional factor in plants. Int. J. Mol. Sci. 19: E1528. doi: 10.3390/ijms19051528.
132. Yu Y, Lv Y, Shi Y, et al. (2018) The role of phyto-melatonin and related metabolites in response to stress. Molecules 23: E1887. doi: 10.3390/molecules23081887.
133. Mukherjee S (2018) Novel perspectives on the molecular crosstalk mechanisms of serotonin and melatonin in plants. Plant Physiol. Biochem. 132: 33-45. doi: 10.1016/j.plaphy.2018.08.031.
134. Sharif R, Xie C, Zhang H, et al. (2018) Melatonin and its effects on plant systems. Molecules 23: E2352. doi: 10.3390/molecules23092352.
135. Kanwar MK, Yu J, Zhou J (2018) Phytomelatonin: Recent advances and future prospects. J. Pineal Res. 65: e12526. doi: 10.1111/jpi.12526.
136. Arnao MB, Hernández-Ruiz J (2019) Melatonin: A new plant hormone and/or a plant master regulator? Trends Plant Sci. 24: 38-48. doi: 10.1016/j.tplants.2018.10.010.
137. Zhan H, Nie X, Zhang T, et al. (2019) Melatonin: A small molecule but important for salt stress tolerance in plants. Int. J. Mol. Sci. 20: E709. doi: 10.3390/ijms20030709.
138. Debnath B, Islam W, Li M, et al. (2019) Melatonin mediates enhancement of stress tolerance in plants. Int. J. Mol. Sci. 20: E1040. doi: 10.3390/ijms20051040.
139. Li J, Liu J, Zhu T, et al. (2019) The role of melatonin in salt stress responses. Int. J. Mol. Sci. 20: E1735. doi: 10.3390/ijms20071735.
140. Hardeland R (2005) Antioxidative protection by melatonin – Multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 27: 119-130.
141. Hardeland R, Cardinali DP, Srinivasan V, et al. (2011) Melatonin – A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 93: 350-384. doi: 10.1016/j.pneurobio.2010.12.004.
142. Lee HY, Byeon Y, Back K (2014) Melatonin as a signal molecule triggering defense responses against pathogen attack in Arabidopsis and tobacco. J. Pineal Res. 57: 262-268. doi: 10.1111/jpi.12165.
143. Lee HY, Byeon Y, Tan D-X, et al. (2015) Arabidopsis serotonin N-acetyltransferase knockout mutant plants exhibit decreased melatonin and salicylic acid levels resulting in susceptibility to an avirulent pathogen. J. Pineal Res. 58: 291-299. doi: 10.1111/jpi.12231.
144. Qian Y, Tan D-X, Reiter RJ, et al. (2015) Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Sci. Rep. 5: 15815. doi: 10.1038/srep15815.
145. Shi H, Chen Y, Tan D-X, et al. (2015) Melatonin induces nitric oxide and the potential mechanisms relate to innate immunity against bacterial pathogen infection in Arabidopsis. J. Pineal Res. 59: 102-108. doi: 10.1111/jpi.12244.
146. Zhao H, Xu L, Su T, et al. (2015). Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J. Pineal Res. 59: 109-119. doi: 10.1111/jpi.12245.
147. Shi H, Qian Y, Tan D-X, et al. (2015) Melatonin induces the transcripts of CBF/DREB1s and their involvement in both abiotic and biotic stresses in Arabidopsis. J. Pineal Res. 59: 334-342. doi: 10.1111/jpi.12262.
148. Shi H, Chen K, Wei Y, et al. (2016) Fundamental issues of melatonin-mediated stress signaling in plants. Front. Plant Sci. 7: 1124. doi: 10.3389/fpls.2016.01124.
149. Wei Y, Hu W, Wang Q, et al. (2017) Identification, transcriptional and functional analysis of heat-shock protein 90s in banana (Musa acuminata L.) highlight their novel role in melatonin-mediated plant response to Fusarium wilt. J. Pineal Res. 62: e12367. doi: 10.1111/jpi.12367.
150. Mandal MK, Suren H, Ward B, et al. (2018) Differential roles of melatonin in plant-host resistance and pathogen suppression in cucurbits. J. Pineal Res. 65: e12505. doi: 10.1111/jpi.12505.
151. Chen X, Sun C, Laborda P, et al. (2018) Melatonin treatment inhibits the growth of Xanthomonas oryzae pv. oryzae. Front. Microbiol. 9: 2280. doi: 10.3389/fmicb.2018.02280.
152. Ullah A, Manghwar H, Shaban M, et al (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environ. Sci. Pollut. Res. Int. 25: 33103-33118. doi: 10.1007/s11356-018-3364-5.
153. Ku YS, Sintaha M, Cheung MY, et al. (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int. J. Mol. Sci. 19: E3206. doi: 10.3390/ijms19103206.
154. Weeda S, Zhang N, Zhao X, et al. (2014). Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS One 9: e93462. doi: 10.1371/journal.pone.0093462.
155. Erland LAE, Shukla MR, Singh AS, et al. (2018) Melatonin and serotonin: Mediators in the symphony of plant morphogenesis. J. Pineal Res. 64: e12452. doi: 10.1111/jpi.12452.
156. Tan D-X, Hardeland R, Back K, et al. (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J. Pineal Res. 61: 27-40. doi: 10.1111/jpi.12336.
157. Okazaki M, Higuchi K, Aouini A, et al. (2010) Lowering intercellular melatonin levels by transgenic analysis of indoleamine 2,3-dioxygenase from rice in tomato plants. J. Pineal Res. 49: 239-247. doi: 10.1111/j.1600-079X.2010.00788.x.
158. Tan D-X, Manchester LC, Di Mascio P, et al. (2007) Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J. 21: 1724-1729. doi: 10.1096/fj.06-7745com.
159. Byeon Y, Back K (2015) Molecular cloning of melatonin 2-hydroxylase responsible for 2-hydroxymelatonin production in rice (Oryza sativa). J. Pineal Res. 58: 343-351. doi: 10.1111/jpi.12220.
160. Byeon Y, Lee HY, Hwang OJ, et al (2015) Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment. J. Pineal Res. 58: 470-478. doi: 10.1111/jpi.12232.
161. Byeon Y, Tan D-X, Reiter RJ, et al. (2015) Predominance of 2-hydroxymelatonin over melatonin in plants. J. Pineal Res. 59: 448-454. doi: 10.1111/jpi.12274.
162. Yang Y, Zhou R, Park SY, et al (2017) 2-Hydroxymelatonin, a predominant hydroxylated melatonin metabolite in plants, shows antitumor activity against human colorectal cancer cells. Molecules 22: E453. doi: 10.3390/molecules22030453.
163. Slominski AT, Semak I, Fischer TW, et al. (2017) Metabolism of melatonin in the skin: Why is it important? Exp. Dermatol. 26: 563-568. doi: 10.1111/exd.13208.
164. Horstman JA, Wrona MZ, Dryhurst G (2002) Further insights into the reaction of melatonin with hydroxyl radical. Bioorg. Chem. 30: 371-382. doi: 10.1016/S0045-2068(02)00511-4.
165. Hardeland R (2008) Melatonin, hormone of darkness and more: occurrence, control mechanisms, actions and bioactive metabolites. Cell. Mol. Life Sci. 65: 2001-2018. doi: 10.1007/s00018-008-8001-x.
166. Pérez-González A, Galano A, Alvarez-Idaboy JR, et al. (2017) Radical-trapping and preventive antioxidant effects of 2-hydroxymelatonin and 4-hydroxymelatonin: Contributions to the melatonin protection against oxidative stress. Biochim. Biophys. Acta 1861: 2206-2217. doi: 10.1016/j.bbagen.2017.06.016.
167. Lee HJ, Back K (2016) 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J. Pineal Res. 61: 303-316. doi: 10.1111/jpi.12347.
168. Lee K, Zawadzka A, Czarnocki Z, et al. (2016) Molecular cloning of melatonin 3-hydroxylase and its production of cyclic 3-hydroxymelatonin in rice (Oryza sativa). J. Pineal Res. 61: 470-478. doi: 10.1111/jpi.12361.
169. Wei J, Li D-X, Zhang J-R, et al. (2018) Phytomelatonin receptor PMTR1‐mediated signaling regulates stomatal closure in Arabidopsis thaliana. J. Pineal Res. 65: e12500. doi: 10.1111/jpi.12500.
Published
2019-08-12
How to Cite
[1]
Hardeland, R. 2019. Melatonin in the evolution of plants and other phototrophs. Melatonin Research. 2, 3 (Aug. 2019), 10-36. DOI:https://doi.org/https://doi.org/10.32794/mr11250029.