Melatonin and chromatin
Melatonin and chromatin
Abstract
Melatonin affects chromatin remodeling, thereby activating or silencing specific genes and, presumably, also by modulating circadian-mediated changes in chromatin structure. Melatonin has been shown to exert effects on chromatin under conditions of toxin exposure, treatment with other hormones such as glucocorticoids or leptin, in cancer, and during developmental processes. Most of the documented actions concern histone modifications or their reversal that facilitate or prevent nucleosome eviction. Less information is available on DNA methylation or demethylation at regulatory CpG islands. To date, this has been mainly studied under conditions of early development, occasionally concerning seasonality or shiftwork with light at night. Another emerging field, which is still insufficiently studied, concerns regulation via DNA-interacting noncoding RNAs, in particular, super-enhancer lncRNAs. Although the direct information on actions by melatonin is widely missing, this field promises to become important, as numerous RNAs of this type have been shown to be rhythmically expressed. The circadian aspect of melatonin’s role in chromatin remodeling and control of gene expression deserves future attention. This includes the role of sirtuin 1, which participates in the circadian machinery and apparently mediates several effects of melatonin that are suppressed by sirtuin inhibitors or sirtuin 1 knockdown.
References
2. Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog. Brain Res. 181: 127-151.
3. Hardeland R, Cardinali DP, Srinivasan V, Spence DW, Brown GM, Pandi-Perumal SR (2011) Melatonin – A pleiotropic, orchestrating regulator molecule. Prog. Neurobiol. 93: 350-384.
4. Hardeland R (2009) Melatonin: Signaling mechanisms of a pleiotropic agent. BioFactors 35: 183-192.
5. Hardeland R (2018) Melatonin and inflammation—Story of a double-edged blade. J. Pineal Res. 65: e12525; DOI: 10.1111/jpi.12525.
6. Chaste P, Clement N, Mercati O, Guillaume JL, Delorme R, Botros HG, Pagan C, Périvier S, Scheid I, Nygren G, Anckarsäter H, Rastam M, Ståhlberg O, Gillberg C, Serrano E, Lemière N, Launay JM, Mouren-Simeoni MC, Leboyer M, Gillberg C, Jockers R, Bourgeron T (2010) Identification of pathway-biased and deleterious melatonin receptor mutants in autism spectrum disorders and in the general population. PLoS One 5: e11495; DOI: 10.1371/journal.pone.0011495.
7. Shi D, Xiao X, Wang J, Liu L, Chen W, Fu L, Xie F, Huang W, Deng W (2012) Melatonin suppresses proinflammatory mediators in lipopolysaccharide-stimulated CRL1999 cells via targeting MAPK, NF-κB, c/EBPβ, and p300 signaling. J. Pineal Res. 53: 154-165.
8. Shin IS, Park JW, Shin NR, Jeon CM, Kwon OK, Lee MY, Kim HS, Kim JC, Oh SR, Ahn KS (2014) Melatonin inhibits MUC5AC production via suppression of MAPK signaling in human airway epithelial cells. J. Pineal Res. 56: 398-407.
9. Pan Y, Niles LP (2015) Epigenetic mechanisms of melatonin action in human SH-SY5Y neuroblastoma cells. Mol. Cell. Endocrinol. 402: 57-63.
10. Liu L, Xu Y, Reiter RJ, Pan Y, Chen D, Liu Y, Pu X, Jiang L, Li Z (2016) Inhibition of ERK1/2 signaling pathway is involved in melatonin's antiproliferative effect on human MG-63 osteosarcoma cells. Cell Physiol. Biochem. 39: 2297-2307.
11. Korkmaz A, Rosales-Corral S, Reiter RJ (2012) Gene regulation by melatonin linked to epigenetic phenomena. Gene 503: 1-11.
12. Hardeland R (2017) Future demands concerning the epigenetic relevance of melatonin and the circadian system in gerontology. J. Geriatr. Med. Gerontol. 3: 036; DOI 10.23937/2469-5858/1510036.
13. Hardeland R (2018) Interactions of melatonin and microRNAs. Biochem. Mol. Biol. J. 4: DOI: 10.21767/2471-8084.100046.
14. Hardeland R (2018) Extended signaling by melatonin. Cell Cell. Life Sci. J. 3: 000123.
15. Hardeland R (2018) Brain inflammaging: roles of melatonin, circadian clocks and sirtuins. J. Clin. Cell. Immunol. 9: DOI: 10.4172/2155-9899.1000543.
16. Hardeland R (2018) On the relationships between lncRNAs and other orchestrating regulators: Role of the circadian system. Epigenomes 2: DOI: 10.3390/epigenomes2020009.
17. Hardeland R (2018) Recent findings in melatonin research and their relevance to the CNS. Cent. Nerv. Syst. Agents Med. Chem. 18: 102-114.
18. Grimaldi B, Nakahata Y, Kaluzova M, Masubuchi S, Sassone-Corsi P (2009) Chromatin remodeling, metabolism and circadian clocks: the interplay of CLOCK and SIRT1. Int. J. Biochem. Cell Biol. 41: 81-86.
19. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654-657.
20. Bellet MM, Orozco-Solis R, Sahar S, Eckel-Mahan K, Sassone-Corsi P (2011) The time of metabolism: NAD+, SIRT1, and the circadian clock. Cold Spring Harb. Symp. Quant. Biol. 76: 31-38.
21. Sahar S, Sassone-Corsi P (2013) The epigenetic language of circadian clocks. Handb. Exp. Pharmacol. 217: 29-44.
22. Masri S (2015) Sirtuin-dependent clock control: New advances in metabolism, aging and cancer. Curr. Opin. Clin. Nutr. Metab. Care 18: 521-527.
23. Fan Z, Zhao M, Joshi PD, Li P, Zhang Y, Guo W, Xu Y, Wang H, Zhao Z, Yan J (2017) A class of circadian long non-coding RNAs mark enhancers modulating long-range circadian gene regulation. Nucleic Acids Res. 45: 5720-5738.
24. Hardeland R (2017) Melatonin and the pathologies of weakened or dysregulated circadian oscillators. J. Pineal Res. 62: e12377; DOI: 10.1111/jpi.12377.
25. Powell WT, Coulson RL, Crary FK, Wong SS, Ach RA, Tsang P, Yamada NA, Yasui DH, LaSalle JM (2013) A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum. Mol. Genet. 22: 4318-4328.
26. Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, Federation A, Chao J, Elliott O, Liu ZP, Economides AN, Bradner JE, Rabadan R, Basu U (2015) RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 161: 774-789.
27. Aguilar-Arnal L, Katada S, Orozco-Solis R, Sassone-Corsi P (2015) NAD+-SIRT1 control of H3K4 trimethylation through circadian deacetylation of MLL1. Nat. Struct. Mol. Biol. 22: 312-318.
28. O’Hagan HM, Mohammad HP, Baylin SB (2008) Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 4: e1000155; DOI: 10.1371/journal.pgen.1000155.
29. Wakeling LA, Ions LJ, Escolme SM, Cockell SJ, Su T, Dey M, Hampton EV, Jenkins G, Wainwright LJ, McKay JA, Ford D (2015) SIRT1 affects DNA methylation of polycomb group protein target genes, a hotspot of the epigenetic shift observed in ageing. Hum. Genomics 9: DOI: 10.1186/s40246-015-0036-0.
30. Mateen BA, Hill CS, Biddie SC, Menon DK (2017) DNA methylation: basic biology and application to traumatic brain injury. J. Neurotrauma 34: 2379-2388.
31. Wiles ET, Selker EU (2017) H3K27 methylation: a promiscuous repressive chromatin mark. Curr. Opin. Genet. Dev. 43: 31-37.
32. Zhang P, Huang B, Xu X, Sessa WC (2013) Ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG), components of the demethylation pathway, are direct targets of miRNA-29a. Biochem. Biophys. Res. Commun. 437: 368-373.
33. Schomacher L, Niehrs C (2017) DNA repair and erasure of 5-methylcytosine in vertebrates. Bioessays 39: 1600218; DOI: 10.1002/bies.201600218.
34. Sáinz RM, Mayo JC, Kotler M, Uría H, Antolín I, Rodríguez C (1998) Melatonin decreases mRNA for histone H4 in thymus of young rats. Life Sci. 63: 1109-1117.
35. Niles LP, Pan Y, Kang S, Lacoul A (2013) Melatonin induces histone hyperacetylation in the rat brain. Neurosci. Lett. 541: 49-53.
36. Sharma R, Ottenhof T, Rzeczkowska PA, Niles LP (2008) Epigenetic targets for melatonin: induction of histone H3 hyperacetylation and gene expression in C17.2 neural stem cells. J. Pineal Res. 45: 277-284.
37. Li X, Chen X, Zhou W, Ji S, Li X, Li G, Liu G, Wang F, Hao A (2017) Effect of melatonin on neuronal differentiation requires CBP/p300-mediated acetylation of histone H3 lysine 14. Neuroscience 364: 45-59.
38. Chen Z, Zuo X, Li H, Hong R, Ding B, Liu C, Gao D, Shang H, Cao Z, Huang W, Zhang X, Zhang Y (2017) Effects of melatonin on maturation, histone acetylation, autophagy of porcine oocytes and subsequent embryonic development. Anim. Sci. J. 88: 1298-1310.
39. Keshavarzi S, Salehi M, Farifteh-Nobijari F, Hosseini T, Hosseini S, Ghazifard A, Ghaffari Novin M, Fallah-Omrani V, Nourozian M, Hosseini A (2018) Melatonin modifies histone acetylation during in vitro maturation of mouse oocytes. Cell J. 20: 244-249.
40. Deng WG, Tang ST, Tseng HP, Wu KK (2006) Melatonin suppresses macrophage cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting p52 acetylation and binding. Blood 108: 518-524.
41. Domínguez Rubio AP, Correa F, Aisemberg J, Dorfman D, Bariani MV, Rosenstein RE, Zorrilla Zubilete M, Franchi AM (2017) Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice. J. Pineal Res. 63: e12439; DOI: 10.1111/jpi.12439.
42. Milosavljević A, DJukić L, Toljić B, Milašin J, DŽeletović B, Brković B, Roganović J (2018) Melatonin levels in human diabetic dental pulp tissue and its effects on dental pulp cells under hyperglycaemic conditions. Int. Endod. J. 51: 1149-1158.
43. Ruiz L, Gurlo T, Ravier MA, Wojtusciszyn A, Mathieu J, Brown MR, Broca C, Bertrand G, Butler PC, Matveyenko AV, Dalle S, Costes S (2018) Proteasomal degradation of the histone acetyl transferase p300 contributes to beta-cell injury in a diabetes environment. Cell Death Dis. 9: DOI: 10.1038/s41419-018-0603-0.
44. Wu TH, Kuo HC, Lin IC, Chien SJ, Huang LT, Tain YL (2014) Melatonin prevents neonatal dexamethasone induced programmed hypertension: histone deacetylase inhibition. J. Steroid Biochem. Mol. Biol. 144: Pt B, 253-259.
45. Tain YL, Chen CC, Sheen JM, Yu HR, Tiao MM, Kuo HC, Huang LT (2014) Melatonin attenuates prenatal dexamethasone-induced blood pressure increase in a rat model. J. Am. Soc. Hypertens. 8: 216-226.
46. Tiao MM, Huang LT, Chen CJ, Sheen JM, Tain YL, Chen CC, Kuo HC, Huang YH, Tang KS, Chu EW, Yu HR (2014) Melatonin in the regulation of liver steatosis following prenatal glucocorticoid exposure. Biomed. Res. Int. 2014: 942172; DOI: 10.1155/2014/942172.
47. Almabhouh FA, Osman K, Ibrahim SF, Gupalo S, Gnanou J, Ibrahim E, Singh HJ (2017) Melatonin ameliorates the adverse effects of leptin on sperm. Asian J. Androl. 19: 647-654.
48. Almabhouh FA, Singh HJ (2018) Adverse effects of leptin on histone-to-protamine transition during spermatogenesis are prevented by melatonin in Sprague-Dawley rats. Andrologia 50: doi: 10.1111/and.12814.
49. Yu S, Wang X, Geng P, Tang X, Xiang L, Lu X, Li J, Ruan Z, Chen J, Xie G, Wang Z, Ou J, Peng Y, Luo X, Zhang X, Dong Y, Pang X, Miao H, Chen H, Liang H (2017) Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells. J. Pineal Res. 63: e12405; DOI: 10.1111/jpi.12405.
50. Lin TB, Hsieh MC, Lai CY, Cheng JK, Wang HH, Chau YP, Chen GD, Peng HY (2016) Melatonin relieves neuropathic allodynia through spinal MT2-enhanced PP2Ac and downstream HDAC4 shuttling-dependent epigenetic modification of hmgb1 transcription. J. Pineal Res. 60: 263-276.
51. Wang Z, Qin G, Zhao TC (2014) Histone deacetylase 4 (HDAC4): Mechanism of regulations and biological functions. Epigenomics 6: 139-150.
52. Lan M, Han J, Pan MH, Wan X, Pan ZN, Sun SC (2018) Melatonin protects against defects induced by deoxynivalenol during mouse oocyte maturation. J. Pineal Res. 65: e12477; DOI: 10.1111/jpi.12477.
53. Zhang T, Zhou Y, Li L, Zhao Y, De Felici M, Reiter RJ, Shen W (2018) Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. J. Pineal Res. 65: e12497; DOI: 10.1111/jpi.12497.
54. Pang YW, Jiang XL, Wang YC, Wang YY, Hao HS, Zhao SJ, Du WH, Zhao XM, Wang L, Zhu HB (2018) Melatonin protects against paraquat-induced damage during in vitro maturation of bovine oocytes. J. Pineal Res. e12532 [Epub ahead of print, Oct 15]; DOI: 10.1111/jpi.12532.
55. Lv Y, Zhang P, Guo J, Zhu Z, Li X, Xu D, Zeng W (2018) Melatonin protects mouse spermatogonial stem cells against hexavalent chromium-induced apoptosis and epigenetic histone modification. Toxicol. Appl. Pharmacol. 340: 30-38.
56. Castro LM, Gallant M, Niles LP (2005) Novel targets for valproic acid: up-regulation of melatonin receptors and neurotrophic factors in C6 glioma cells. J. Neurochem. 95: 1227-1236.
57. Kim B, Rincón Castro LM, Jawed S, Niles LP (2008) Clinically relevant concentrations of valproic acid modulate melatonin MT1 receptor, HDAC and MeCP2 mRNA expression in C6 glioma cells. Eur. J. Pharmacol. 589: 45-48.
58. Bahna SG, Niles LP (2017) Epigenetic induction of melatonin MT1 receptors by valproate: Neurotherapeutic implications. Eur. Neuropsychopharmacol. 27: 828-832.
59. Bahna SG, Niles LP (2017) Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br. J. Pharmacol. doi: 10.1111/bph.14058.
60. Tan DX, Poeggeler B, Reiter RJ, Chen LD, Chen S, Manchester LC, Barlow-Walden LR (1993) The pineal hormone melatonin inhibits DNA-adduct formation induced by the chemical carcinogen safrole in vivo. Cancer Lett. 70: 65-71.
61. Vijayalaxmi, Reiter RJ, Herman TS, Meltz ML (1996) Melatonin and radioprotection from genetic damage: in vivo/in vitro studies with human volunteers. Mutat. Res. 371: 221-228.
62. Reiter RJ (1999) Oxidative damage to nuclear DNA: amelioration by melatonin. NEL Review. Neuro Endocrinol. Lett. 20: 145-150.
63. Vijayalaxmi, Reiter RJ, Tan DX, Herman TS, Thomas CR Jr (2004) Melatonin as a radioprotective agent: a review. Int. J Radiat. Oncol. Biol. Phys. 59: 639-653.
64. Liu Y, Yang X, Wang W, Wu X, Zhu H, Liu F (2017) Melatonin counteracts cobalt nanoparticle‑induced cytotoxicity and genotoxicity by deactivating reactive oxygen species‑dependent mechanisms in the NRK cell line. Mol. Med. Rep. 16: 4413-4420.
65. Liang S, Jin YX, Yuan B, Zhang JB, Kim NH (2017) Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci. Rep. 7: DOI: 10.1038/s41598-017-11161-9.
66. Klein DC (2007) Arylalkylamine N-acetyltransferase: "the timezyme". J. Biol. Chem. 282, 4233-4237.
67. Ho AK, Price DM, Dukewich WG, Steinberg N, Arnason TG, Chik CL (2007) Acetylation of histone H3 and adrenergic-regulated gene transcription in rat pinealocytes. Endocrinology 148: 4592-4600.
68. Price DM, Kanyo R, Steinberg N, Chik CL, Ho AK (2009) Nocturnal activation of aurora C in rat pineal gland: its role in the norepinephrine-induced phosphorylation of histone H3 and gene expression. Endocrinology 150: 2334-2341.
69. Chik CL, Price DM, Ho AK (2011) Histone modifications on the adrenergic induction of type II deiodinase in rat pinealocytes. Mol. Cell. Endocrinol. 343: 63-70.
70. Li X, Sakashita G, Matsuzaki H, Sugimoto K, Kimura K, Hanaoka F, Taniguchi H, Furukawa K, Urano T (2004) Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J. Biol. Chem. 279: 47201-47211.
71. Yan X, Cao L, Li Q, Wu Y, Zhang H, Saiyin H, Liu X, Zhang X, Shi Q, Yu L (2005) Aurora C is directly associated with Survivin and required for cytokinesis. Genes Cells 10: 617-626.
72. Fujii S, Srivastava V, Hegde A, Kondo Y, Shen L, Hoshino K, Gonzalez Y, Wang J, Sasai K, Ma X, Katayama H, Estecio MR, Hamilton SR, Wistuba I, Issa JP, Sen S (2015) Regulation of AURKC expression by CpG island methylation in human cancer cells. Tumour Biol. 36: 8147-8158.
73. Liu Z, Gan L, Luo D, Sun C (2017) Melatonin promotes circadian rhythm-induced proliferation through Clock/histone deacetylase 3/c-Myc interaction in mouse adipose tissue. J. Pineal Res. 62: e12383; DOI: 10.1111/jpi.12383.
74. Hardeland R (2014) Melatonin, noncoding RNAs, messenger RNA stability and epigenetics ― evidence, hints, gaps and perspectives. Int. J. Mol. Sci. 15: 18221-18252.
75. Sahar S, Sassone-Corsi P (2007) Circadian clock and breast cancer: a molecular link. Cell Cycle 6: 1329-1331.
76. Chang HC, Guarente L (2013) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 15: 1448-1460.
77. Taufique SKT, Prabhat A, Kumar V (2018) Illuminated night alters hippocampal gene expressions and induces depressive-like responses in diurnal corvids. Eur. J. Neurosci. DOI: 10.1111/ejn.14157.
78. Lee K, Lee HY, Back K (2018) Rice histone deacetylase 10 and Arabidopsis histone deacetylase 14 genes encode N-acetylserotonin deacetylase, which catalyzes conversion of N-acetylserotonin into serotonin, a reverse reaction for melatonin biosynthesis in plants. J. Pineal Res. 64: e12460; DOI: 10.1111/jpi.12460.
79. Wang J, Xiao X, Zhang Y, Shi D, Chen W, Fu L, Liu L, Xie F, Kang T, Huang W, Deng W (2012) Simultaneous modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin to inhibit proliferation and induce apoptosis in breast cancer cells. J. Pineal Res. 53: 77-90.
80. Yeh CM, Lin CW, Yang JS, Yang WE, Su SC, Yang SF (2016) Melatonin inhibits TPA-induced oral cancer cell migration by suppressing matrix metalloproteinase-9 activation through the histone acetylation. Oncotarget 7: 21952-21967.
81. Fan C, Pan Y, Yang Y, Di S, Jiang S, Ma Z, Li T, Zhang Z, Li W, Li X, Reiter RJ, Yan X (2015) HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways. J. Pineal Res. 59: 321-333.
82. Yamanishi M, Narazaki H, Asano T (2015) Melatonin overcomes resistance to clofarabine in two leukemic cell lines by increased expression of deoxycytidine kinase. Exp. Hematol. 43: 207-714.
83. Wei JY, Li WM, Zhou LL, Lu QN, He W (2015) Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. J. Pineal Res. 58: 429-438.
84. Yang CY, Lin CK, Tsao CH, Hsieh CC6, Lin GJ, Ma KH, Shieh YS, Sytwu HK, Chen YW (2017) Melatonin exerts anti-oral cancer effect via suppressing LSD1 in patient-derived tumor xenograft models. Oncotarget 8: 33756-33769.
85. Fang Y, Deng S, Zhang J, Liu H, Li Y, Zhang X, Liu Y (2018) Melatonin-mediated development of ovine cumulus cells, perhaps by regulation of DNA methylation. Molecules 23: E494; DOI: 10.3390/molecules23020494.
86. Irmak MK, Topal T, Oter S (2005) Melatonin seems to be a mediator that transfers the environmental stimuli to oocytes for inheritance of adaptive changes through epigenetic inheritance system. Med. Hypotheses 64: 1138-1143.
87. Saeedabadi S, Abazari-Kia AH, Rajabi H, Parivar K, Salehi M (2018) Melatonin improves the developmental competence of goat oocytes. Int. J. Fertil. Steril. 12: 157-163.
88. He B, Yin C, Gong Y, Liu J, Guo H, Zhao R (2018) Melatonin-induced increase of lipid droplets accumulation and in vitro maturation in porcine oocytes is mediated by mitochondrial quiescence. J. Cell Physiol. 233: 302-312.
89. Yang M, Tao J, Wu H, Guan S, Liu L, Zhang L, Deng S, He C, Ji P, Liu J, Liu G (2018) Aanat knockdown and melatonin supplementation in embryo development: involvement of mitochondrial function and DNA methylation. Antioxid. Redox Signal. 2018: DOI: 10.1089/ars.2018.7555.
90. Rexhaj E, Pireva A, Paoloni-Giacobino A, Allemann Y, Cerny D, Dessen P, Sartori C, Scherrer U, Rimoldi SF (2015) Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am. J. Physiol. Heart Circ. Physiol. 309: H1151-H1156.
91. Haghighi F, Ge Y, Chen S, Xin Y, Umali MU, De Gasperi R, Gama Sosa MA, Ahlers ST, Elder GA (2015) Neuronal DNA methylation profiling of blast-related traumatic brain injury. J. Neurotrauma 32: 1200-1209.
92. Sarnowski C, Laprise C, Malerba G, Moffatt MF, Dizier MH, Morin A, Vincent QB, Rohde K, Esparza-Gordillo J, Margaritte-Jeannin P, Liang L, Lee YA, Bousquet J, Siroux V, Pignatti PF, Cookson WO, Lathrop M, Pastinen T, Demenais F, Bouzigon E (2016) DNA methylation within melatonin receptor 1A (MTNR1A) mediates paternally transmitted genetic variant effect on asthma plus rhinitis. J. Allergy Clin. Immunol. 138: 748-753.
93. Sulkava S, Ollila HM, Alasaari J, Puttonen S, Härmä M, Viitasalo K, Lahtinen A, Lindström J, Toivola A, Sulkava R, Kivimäki M, Vahtera J, Partonen T, Silander K, Porkka-Heiskanen T, Paunio T (2017) Common genetic variation near melatonin receptor 1A gene linked to job-related exhaustion in shift workers. Sleep 40: DOI: 10.1093/sleep/zsw011.
94. Nakamura E, Kozaki K, Tsuda H, Suzuki E, Pimkhaokham A, Yamamoto G, Irie T, Tachikawa T, Amagasa T, Inazawa J, Imoto I (2008) Frequent silencing of a putative tumor suppressor gene melatonin receptor 1 A (MTNR1A) in oral squamous-cell carcinoma. Cancer Sci. 99: 1390-1400.
95. Zhu Y, Stevens RG, Hoffman AE, Tjonneland A, Vogel UB, Zheng T, Hansen J (2011) Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol. Int. 28: 852-861.
96. Zubidat AE, Haim A (2017) Artificial light-at-night - a novel lifestyle risk factor for metabolic disorder and cancer morbidity. J. Basic Clin. Physiol. Pharmacol. 28: 295-313.
97. Schwimmer H, Metzer A, Pilosof Y, Szyf M, Machnes ZM, Fares F, Harel O, Haim A (2014) Light at night and melatonin have opposite effects on breast cancer tumors in mice assessed by growth rates and global DNA methylation. Chronobiol. Int. 31: 144-150.
98. Lee SE, Kim SJ, Yoon HJ, Yu SY, Yang H, Jeong SI, Hwang SY, Park CS, Park YS (2013) Genome-wide profiling in melatonin-exposed human breast cancer cell lines identifies differentially methylated genes involved in the anticancer effect of melatonin. J. Pineal Res. 54: 80-88.
99. Martín V, Sanchez-Sanchez AM, Herrera F, Gomez-Manzano C, Fueyo J, Alvarez-Vega MA, Antolín I, Rodriguez C (2013) Melatonin-induced methylation of the ABCG2/BCRP promoter as a novel mechanism to overcome multidrug resistance in brain tumour stem cells. Br. J. Cancer 108: 2005-2012.
100. Hsieh MC, Ho YC, Lai CY, Chou D, Wang HH, Chen GD, Lin TB, Peng HY (2017) Melatonin impedes Tet1-dependent mGluR5 promoter demethylation to relieve pain. J. Pineal Res. 63: e12436; DOI: 10.1111/jpi.12436.
101. Stevenson TJ, Prendergast BJ (2013) Reversible DNA methylation regulates seasonal photoperiodic time measurement. Proc. Natl. Acad Sci. USA 110: 16651-16656.
102. Lynch EW, Coyle CS, Lorgen M, Campbell EM, Bowman AS, Stevenson TJ (2016) Cyclical DNA methyltransferase 3a expression is a seasonal and estrus timer in reproductive tissues. Endocrinology 157: 2469-2478.
103. Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism - the epigenetic link. J. Cell Sci. 123: (Pt 22), 3837-3848.
104. Sahar S, Sassone-Corsi P (2012) Regulation of metabolism: the circadian clock dictates the time. Trends Endocrinol. Metab. 23: 1-8.
105. Feng D, Lazar MA (2012) Clocks, metabolism, and the epigenome. Mol. Cell 47: 158-167.
106. Milagro FI, Mansego ML, De Miguel C, Martínez JA (2013) Dietary factors, epigenetic modifications and obesity outcomes: progresses and perspectives. Mol. Aspects Med. 34: 782-812.
107. Masri S, Sassone-Corsi P (2013)The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat. Rev. Neurosci. 14: 69-75.
108. Qureshi IA1, Mehler MF (2014) Epigenetics of sleep and chronobiology. Curr. Neurol. Neurosci. Rep. 14: DOI: 10.1007/s11910-013-0432-6.
109. Curtis AM, Bellet MM, Sassone-Corsi P, O'Neill LA (2014) Circadian clock proteins and immunity. Immunity 40: 178-186.
110. Orozco-Solis R, Sassone-Corsi P (2014) Circadian clock: linking epigenetics to aging. Curr. Opin. Genet. Dev. 26: 66-72.
111. Masri S, Sassone-Corsi P (2014) Sirtuins and the circadian clock: bridging chromatin and metabolism. Sci. Signal. 7: DOI: 10.1126/scisignal.2005685.
112. Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P (2014) Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int. J. Mol. Sci. 15: 16848-16884.
113. Masri S, Kinouchi K, Sassone-Corsi P (2015) Circadian clocks, epigenetics, and cancer. Curr. Opin. Oncol. 27: 50-56.
114. Liu C, Chung M (2015) Genetics and epigenetics of circadian rhythms and their potential roles in neuropsychiatric disorders. Neurosci. Bull. 31: 141-159.
115. Haim A, Zubidat AE (2015) Artificial light at night: melatonin as a mediator between the environment and epigenome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370: 20140121; DOI: 10.1098/rstb.2014.0121.
116. Matsushima S, Sadoshima J (2015) The role of sirtuins in cardiac disease. Am. J. Physiol. Heart Circ. Physiol. 309: H1375-H1389.
117. Takahashi JS (2015) Molecular components of the circadian clock in mammals. Diabetes Obes. Metab. 17: Suppl 1, 6-11.
118. Papazyan R, Zhang Y, Lazar MA (2016) Genetic and epigenomic mechanisms of mammalian circadian transcription. Nat. Struct. Mol. Biol. 23: 1045-1052.
119. Padmanabhan K, Billaud M (2017) Desynchronization of circadian clocks in cancer: A metabolic and epigenetic connection. Front. Endocrinol. (Lausanne) 8: 136; DOI: 10.3389/fendo.2017.00136.
120. Phillipson OT (2017) Alpha-synuclein, epigenetics, mitochondria, metabolism, calcium traffic, & circadian dysfunction in Parkinson's disease. An integrated strategy for management. Ageing Res. Rev. 40: 149-167.
121. Morales-Lara D, De-la-Peña C, Murillo-Rodríguez E (2018) Dad's snoring may have left molecular scars in your DNA: the emerging role of epigenetics in sleep disorders. Mol. Neurobiol. 55: 2713-2724.
122. Gaucher J, Montellier E, Sassone-Corsi P (2018) Molecular cogs: Interplay between circadian clock and cell cycle. Trends Cell Biol. 28: 368-379.
123. Bönsch D, Hothorn T, Krieglstein C, Koch M, Nehmer C, Lenz B, Reulbach U, Kornhuber J, Bleich S (2007) Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol. Int. 24: 315-326.
124. Azzi A, Dallmann R, Casserly A, Rehrauer H, Patrignani A, Maier B, Kramer A, Brown SA (2014) Circadian behavior is light-reprogrammed by plastic DNA methylation. Nat. Neurosci. 17: 377-382.
125. Lim AS, Srivastava GP, Yu L, Chibnik LB, Xu J, Buchman AS, Schneider JA, Myers AJ, Bennett DA, De Jager PL (2014) 24-hour rhythms of DNA methylation and their relation with rhythms of RNA expression in the human dorsolateral prefrontal cortex. PLoS Genet. 10: e1004792; DOI: 10.1371/journal.pgen.1004792.
126. Xia L, Ma S, Zhang Y, Wang T, Zhou M, Wang Z, Zhang J (2015) Daily variation in global and local DNA methylation in mouse livers. PLoS One 10: e0118101; DOI: 10.1371/journal.pone.0118101.
127. Coulson RL, Yasui DH, Dunaway KW, Laufer BI, Vogel Ciernia A, Zhu Y, Mordaunt CE, Totah TS, LaSalle JM (2018) Snord116-dependent diurnal rhythm of DNA methylation in mouse cortex. Nat. Commun. 9: DOI: 10.1038/s41467-018-03676-0.
128. Oh G, Ebrahimi S, Carlucci M, Zhang A, Nair A, Groot DE, Labrie V, Jia P, Oh ES, Jeremian RH, Susic M, Shrestha TC, Ralph MR, Gordevičius J, Koncevičius K, Petronis A (2018) Cytosine modifications exhibit circadian oscillations that are involved in epigenetic diversity and aging. Nat. Commun. 9: DOI: 10.1038/s41467-018-03073-7.
129. Zhang L, Lin QL, Lu L, Yang CC, Li YL, Sun FL, Wang DH, Cai YN, Li L (2013) Tissue-specific modification of clock methylation in aging mice. Eur. Rev. Med. Pharmacol. Sci. 17: 1874-1880.
130. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD (2002) Effects of aging on central and peripheral mammalian clocks. Proc. Natl. Acad. Sci. USA 99: 10801-10806.
131. Liu HC, Hu CJ, Tang YC, Chang JG (2008) A pilot study for circadian gene disturbance in dementia patients. Neurosci. Lett. 435: 229-332.
132. Cronin P, McCarthy MJ, Lim ASP, Salmon DP, Galasko D, Masliah E, De Jager PL, Bennett DA, Desplats P (2017) Circadian alterations during early stages of Alzheimer's disease are associated with aberrant cycles of DNA methylation in BMAL1. Alzheimers Dement. 13: 689-700.
133. Mao W, Zhao C, Ding H, Liang K, Xue J, Chan P, Cai Y (2018) Pyrosequencing analysis of methylation levels of clock genes in leukocytes from Parkinson's disease patients. Neurosci. Lett. 668: 115-119.
134. Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA (2014) Protecting the melatonin rhythm through circadian healthy light exposure. Int. J. Mol. Sci. 15: 23448-23500.
135. Shi F, Chen X, Fu A, Hansen J, Stevens R, Tjonneland A, Vogel UB, Zheng T, Zhu Y (2013) Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ. Mol. Mutagen. 54: 406-413.
136. Cheng HY, Papp JW, Varlamova O, Dziema H, Russell B, Curfman JP, Nakazawa T, Shimizu K, Okamura H, Impey S, Obrietan K (2007) microRNA modulation of circadian-clock period and entrainment. Neuron 54: 813-829.
137. Samulin Erdem J, Skare Ø, Petersen-Øverleir M, Notø HØ, Lie JS, Reszka E, Pepłońska B, Zienolddiny S (2017) Mechanisms of breast cancer in shift workers: DNA methylation in five core circadian genes in nurses working night shifts. J. Cancer 8: 2876-2884.
138. Bhatti P, Zhang Y, Song X, Makar KW, Sather CL, Kelsey KT, Houseman EA, Wang P (2015) Nightshift work and genome-wide DNA methylation. Chronobiol. Int. 32: 103-112.
139. Cedernaes J, Osler ME, Voisin S, Broman JE, Vogel H, Dickson SL, Zierath JR, Schiöth HB, Benedict C (2015) Acute sleep loss induces tissue-specific epigenetic and transcriptional alterations to circadian clock genes in men. J. Clin. Endocrinol. Metab. 100: E1255-E1261.
140. Yang MY, Chang JG, Lin PM, Tang KP, Chen YH, Lin HY, Liu TC, Hsiao HH, Liu YC, Lin SF (2006) Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3. Cancer Sci. 97: 1298-1307.
141. Taniguchi H, Fernández AF, Setién F, Ropero S, Ballestar E, Villanueva A, Yamamoto H, Imai K, Shinomura Y, Esteller M (2009) Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 69: 8447-8454.
142. Hanoun M, Eisele L, Suzuki M, Greally JM, Hüttmann A, Aydin S, Scholtysik R, Klein-Hitpass L, Dührsen U, Dürig J (2012) Epigenetic silencing of the circadian clock gene CRY1 is associated with an indolent clinical course in chronic lymphocytic leukemia. PLoS One 7: e34347; DOI: 10.1371/journal.pone.0034347.
143. Liu P, Jiang W, Zhao J, Zhang H (2017) Integrated analysis of genome‑wide gene expression and DNA methylation microarray of diffuse large B-cell lymphoma with TET mutations. Mol. Med. Rep. 16: 3777-3782.
144. Kuo SJ, Chen ST, Yeh KT, Hou MF, Chang YS, Hsu NC, Chang JG (2009) Disturbance of circadian gene expression in breast cancer. Virchows Arch. 454: 467-474.
145. Hoffman AE, Zheng T, Yi CH, Stevens RG, Ba Y, Zhang Y, Leaderer D, Holford T, Hansen J, Zhu Y (2010) The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prev. Res. (Phila.) 3: 539-548.
146. Mao Y, Fu A, Hoffman AE, Jacobs DI, Jin M, Chen K, Zhu Y (2015) The circadian gene CRY2 is associated with breast cancer aggressiveness possibly via epigenomic modifications. Tumour Biol. 36: 3533-3539.
147. Hsu MC, Huang CC, Choo KB, Huang CJ (2007) Uncoupling of promoter methylation and expression of Period1 in cervical cancer cells. Biochem. Biophys. Res. Commun. 360: 257-262.
148. Shih MC, Yeh KT, Tang KP, Chen JC, Chang JG (2006) Promoter methylation in circadian genes of endometrial cancers detected by methylation-specific PCR. Mol. Carcinog. 45: 732-740.
149. Yeh CM, Shay J, Zeng TC, Chou JL, Huang TH, Lai HC, Chan MW (2014) Epigenetic silencing of ARNTL, a circadian gene and potential tumor suppressor in ovarian cancer. Int. J. Oncol. 45: 2101-2107.
150. Neumann O, Kesselmeier M, Geffers R, Pellegrino R, Radlwimmer B, Hoffmann K, Ehemann V, Schemmer P, Schirmacher P, Lorenzo Bermejo J, Longerich T (2012) Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology 56: 1817-1827.
151. Fan W, Chen X, Li C, Yongluo, Chen L, Liu P, Chen Z (2014) The analysis of deregulated expression and methylation of the PER2 genes in gliomas. J. Cancer Res. Ther. 10: 636-640.
152. Wang F, Luo Y, Li C, Chen L (2014) Correlation between deregulated expression of PER2 gene and degree of glioma malignancy. Tumori. 100: e266-72; DOI: 10.1700/1778.19292.
153. Jung-Hynes B, Schmit TL, Reagan-Shaw SR, Siddiqui IA, Mukhtar H, Ahmad N (2011) Melatonin, a novel Sirt1 inhibitor, imparts antiproliferative effects against prostate cancer in vitro in culture and in vivo in TRAMP model. J. Pineal Res. 50: 140-149.
154. Hardeland R (2018) Neuroinflammation and aging: significance of declining circadian functions and melatonin. Biochem. Physiol. 7: 243; DOI: 10.4172/2168-9652.1000243.
155. Huang KP, Chen C, Hao J, Huang JY, Liu PQ, Huang HQ (2015) AGEs-RAGE system down-regulates Sirt1 through the ubiquitin-proteasome pathway to promote FN and TGF-β1 expression in male rat glomerular mesangial cells. Endocrinology 156: 268-279.
156. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328.
157. Tamaru T, Hattori M, Honda K, Nakahata Y, Sassone-Corsi P, van der Horst GT, Ozawa T, Takamatsu K (2015) CRY drives cyclic CK2-mediated BMAL1 phosphorylation to control the mammalian circadian clock. PLoS Biol. 13: e1002293; DOI: 10.1371/journal.pbio.1002293.
158. Peng L, Yuan Z, Ling H, Fukasawa K, Robertson K, Olashaw N, Koomen J, Chen J, Lane WS, Seto E (2011) Sirt1 deacetylates the DNA methyltransferase 1 (dnmt1) protein and alters its activities. Mol. Cell. Biol. 31: 4720-4734.
159. Kashiwagi K, Nimura K, Ura K, Kaneda Y (2011) DNA methyltransferase 3b preferentially associates with condensed chromatin. Nucleic Acids Res. 39: 874-888.
160. Meliso FM, Micali D, Silva CT, Sabedot TS, Coetzee SG, Koch A, Fahlbusch FB, Noushmehr H, Schneider-Stock R, Jasiulionis MG (2017) SIRT1 regulates Mxd1 during malignant melanoma progression. Oncotarget 8: 114540-114553.
161. Sun J, He X, Zhu Y, Ding Z, Dong H, Feng Y, Du J, Wang H, Wu X, Zhang L, Yu X, Lin A, McDonald T, Zhao D, Wu H, Hua WK, Zhang B, Feng L, Tohyama K, Bhatia R, Oberdoerffer P, Chung YJ, Aplan PD, Boultwood J, Pellagatti A, Khaled S, Kortylewski M, Pichiorri F, Kuo YH, Carlesso N, Marcucci G, Jin H, Li L (2018) SIRT1 activation disrupts maintenance of myelodysplastic syndrome stem and progenitor cells by restoring TET2 function. Cell Stem Cell 23: 355-369.
162. Zhao H, Yang L, Cui H (2015) SIRT1 regulates autophagy and diploidization in parthenogenetic haploid embryonic stem cells. Biochem. Biophys. Res. Commun. 464: 1163-1170.
163. Su SC, Reiter RJ, Hsiao HY, Chung WH, Yang SF (2018) Functional interaction between melatonin signaling and noncoding RNAs. Trends Endocrinol. Metab. 29: 435-445.
164. Chen CC, Chen CY, Wang SH, Yeh CT, Su SC, Ueng SH, Chuang WY, Hsueh C, Wang TH (2018) Melatonin sensitizes hepatocellular carcinoma cells to chemotherapy through long non-coding RNA RAD51-AS1-mediated suppression of DNA repair. Cancers (Basel) 10: E320. DOI: 10.3390/cancers10090320.
165. Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X (2017) MicroRNAs in DNA damage response, carcinogenesis, and chemoresistance. Int. Rev. Cell. Mol. Biol. 333: 1-49.
166. Plantamura I, Cosentino G, Cataldo A (2018) MicroRNAs and DNA-damaging drugs in breast cancer: strength in numbers. Front Oncol. 8: 352; DOI: 10.3389/fonc.2018.00352.
167. Tokarz P, Pawlowska E, Bialkowska-Warzecha J, Blasiak J (2017) The significance of DNA methylation profile in metastasis-related genes for the progression of colorectal cancer. Cell. Mol. Biol. (Noisy-le-grand) 63: 79-87.
168. Wang S, Wu W, Claret FX (2017) Mutual regulation of microRNAs and DNA methylation in human cancers. Epigenetics 12: 187-197.
169. Pu M, Chen J, Tao Z, Miao L, Qi X, Wang Y, Ren J (2018) Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell. Mol. Life Sci. DOI: 10.1007/s00018-018-2940-7.
170. Miao L, Yao H, Li C, Pu M, Yao X, Yang H, Qi X, Ren J, Wang Y (2016) A dual inhibition: microRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim. Biophys. Acta 1859: 650-662.
171. Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y, Peng L, Zhao L, Peng S, Xiao Y, Dong S, Cao J, Yu W (2017) MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 14: 1326-1334.
172. Saus E, Soria V, Escaramís G, Vivarelli F, Crespo JM, Kagerbauer B, Menchón JM, Urretavizcaya M, Gratacòs M, Estivill X (2010) Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum. Mol. Genet. 19: 4017-4025.
173. Clokie SJ, Lau P, Kim HH, Coon SL, Klein DC (2012) MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J. Biol. Chem. 287: 25312-25324.
174. Kim HJ, Cho H, Alexander R, Patterson HC, Gu M, Lo KA, Xu D, Goh VJ, Nguyen LN, Chai X, Huang CX, Kovalik JP, Ghosh S, Trajkovski M, Silver DL, Lodish H, Sun L (2014) MicroRNAs are required for the feature maintenance and differentiation of brown adipocytes. Diabetes 63: 4045-4056.
175. Wei Q, Lei R, Hu G (2015) Roles of miR-182 in sensory organ development and cancer. Thorac. Cancer 6: 2-9.
176. Mendoza-Viveros L, Chiang CK, Ong JLK, Hegazi S, Cheng AH, Bouchard-Cannon P, Fana M, Lowden C, Zhang P, Bothorel B, Michniewicz MG, Magill ST, Holmes MM, Goodman RH, Simonneaux V, Figeys D, Cheng HM (2017) miR-132/212 modulates seasonal adaptation and dendritic morphology of the central circadian clock. Cell Rep. 19: 505-520.
177. Zhao Y, Zhao R, Wu J, Wang Q, Pang K, Shi Q, Gao Q, Hu Y, Dong X, Zhang J, Sun J (2018) Melatonin protects against Aβ-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. Biofactors DOI: 10.1002/biof.1411.
178. Cai B, Ma W, Bi C, Yang F, Zhang L, Han Z, Huang Q, Ding F, Li Y, Yan G, Pan Z, Yang B, Lu Y (2016) Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit+ cardiac progenitor cells by promoting miR-675. J. Pineal Res. 61: 82-95.
179. Wang TH, Wu CH, Yeh CT, Su SC, Hsia SM, Liang KH, Chen CC, Hsueh C, Chen CY (2017) Melatonin suppresses hepatocellular carcinoma progression via lncRNA-CPS1-IT-mediated HIF-1α inactivation. Oncotarget 8: 82280-82293.
180. Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, Li J, Ju J, Cai B, Xu C, Yang B (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res. 64: e12449; DOI: 10.1111/jpi.12449.
181. Jin M, Cao M, Cao Q, Piao J, Zhao F, Piao J (2018) Long noncoding RNA and gene expression analysis of melatonin-exposed Liaoning cashmere goat fibroblasts indicating cashmere growth. Naturwissenschaften 105: DOI: 10.1007/s00114-018-1585-6.
182. Soibam B (2017) Super-lncRNAs: identification of lncRNAs that target super-enhancers via RNA:DNA:DNA triplet formation. RNA 23: 1729-1742.
This work is licensed under a Creative Commons Attribution 4.0 International License.
For all articles published in Melatonin Res., copyright is retained by the authors. Articles are licensed under an open access Creative Commons CC BY 4.0 license, meaning that anyone may download and read the paper for free. In addition, the article may be reused and quoted provided that the original published version is cited. These conditions allow for maximum use and exposure of the work, while ensuring that the authors receive proper credit.
In exceptional circumstances articles may be licensed differently. If you have specific condition (such as one linked to funding) that does not allow this license, please mention this to the editorial office of the journal at submission. Exceptions will be granted at the discretion of the publisher.