A comparative overview on the role of melatonin and vitamins as potential antioxidants against oxidative stress induced degenerative infirmities: An emerging concept

Comparative analysis on antioxidant properties of vitamin and melatonin

  • Manisha Mukhopadhyay Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata-700009, India
  • Romit Majumder Department of Physiology, Vidyasagar College, Kolkata 700 006, INDIA; Department of Physiology, University of Calcutta; Department of Physiology, Vidyasagar College, Kolkata 700 006, India.
  • Adrita Banerjee Department of Physiology, Vidyasagar College, Kolkata 700 006, INDIA; Department of Physiology, University of Calcutta
  • Debasish Bandyopadhyay Oxidative Stress and Free Radical Biology Laboratory, Department of Physiology, University of Calcutta, 92, APC Road, Kolkata-700009, India
Keywords: ROS, antioxidant, vitamin, mealtonin, synergistic action, degenerative diseases

Abstract

Oxidative stress is a biological phenomenon described by decreased ability of the antioxidative system to neutralize excess reactive oxygen species (ROS). At low or moderate concentrations, ROS creates harmony in physiological functions but over production of ROS in long term can predisposes several chronic and neurodegenerative diseases such as coronary diseases, atherosclerosis, diabetes mellitus, hemolytic anemia, pulmonary diseases, neurodegenerative disorders, etc. The therapeutic use of antioxidants to control oxidative damage is a well-established phenomenon. In these aspects, melatonin and other classical antioxidant vitamins such as carotenoids, α-tocopherol, vitamin D, and ascorbic acid have gained enormous attention in the modern research area. In this review, we will discuss the comparative as well as the synergistic role of melatonin and other vitamins against stress-mediated disorders. Noteworthy, based on research evidence mentioned here we can recommend the combined use of melatonin and vitamins to alleviate the stress-induced toxicity in the broad spectrum.


References

1. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Phys. Rev. 94 (2): 329-354. DOI: 10.1152/physrev.00040.2012.
2. Pizzino G, Irrera N, Cucinotta M, Pallio G,Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative Stress: Harms and benefits for human health. Oxid. Med. Cell Longev. 2017: 8416763. DOI:10.1155/2017/8416763.
3. Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 3 (1): 73-80. DOI: 10.2174/187221309787158371.
4. Sinbad OO, FolorunshoAA, Olabisi OL, Ayoola OA, Temitope EJ (2019) Vitamins as antioxidants. J. Food Sci.Nutr. Res. 2 (3): 214-235.DOI:10.26502/jfsnr.2642-11000021.
5. Gulcin I, Buyukokuroglu ME, Kufrevioglu OI (2003) Metal chelating and hydrogen peroxide scavenging effects of melatonin. J. Pineal Res. 34 (4): 278–281. DOI:10.1034/j.1600-079x.2003.00042.x.
6. Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ (2003) Melatonin: a hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J. Pineal Res. 34 (1): 75–78. DOI:10.1034/j.1600-079x.2003.02111.x.
7. Ziegler E, Filer LJ Jr (1996) Present knowledge in nutrition, 7th edn. International Life Science Institute, Washington.
8. Mukherjee D, Ghosh AK, Dutta M, MitraE, Mallick S, Saha B, Reiter RJ, Bandyopadhyay D (2015) Mechanisms of isoproterenol-induced cardiac mitochondrial damage: protective actions of melatonin. J. Pineal Res. 58 (3): 275–290. DOI: 10.1111/jpi.12213.
9. Bose G, Ghosh A, Chattopadhyay A, Pal PK, Bandyopadhyay D (2019) Melatonin as a potential therapeutic molecule against myocardial damage caused by high fat diet (HFD). Melatonin Res. 2 (3): 37-56. DOI: 10.32794/mr11250030.
10. Ghosh A, Bose G, Dey T, Pal PK, Mishra S, Ghosh AK, Bandyopadhyay D (2019) Melatonin protects against cardiac damage induced by a combination of high fat diet and isoproterenol exacerbated oxidative stress in male Wistar rats. Melatonin Res. 2 (1): 9-31. DOI:10.32794/mr11250009.
11. Pal PK, Sarkar S, MishraS, Chattopadhyay S, Chattopadhyay A, Bandyopadhyay D (2020) Amelioration of adrenaline induced oxidative gastrointestinal damages in rat by melatonin through SIRT1-NFκB and PGC1α-AMPKα cascades. Melatonin Res. 3 (4): 482-502. DOI: 10.32794/mr11250074.
12. Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141 (2): 312-322. DOI: 10.1104/pp.106.077073.
13. Bahorun T, Soobrattee MA, Luximon-Ramma V, Aruoma OI (2006). Free radicals and antioxidants in cardiovascular health and disease. Int. J. Medic. Update 1 (2): 25-41. DOI:10.4314/ijmu.v1i2.39839.
14. Kumar S, Pandey AK (2015) Free radicals: health implications and their mitigation by herbals. J. Adv. Med.Medic. Res. 7 (6): 438-457. DOI: 10.9734/BJMMR/2015/16284.
15. Valko M, Izakovic M, Mazur M, RhodesCJ, Telser J(2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem. 266 (1): 37-56. DOI: 10.1023/b:mcbi.0000049134.69131.89.
16. ValkoM, LeibfritzD, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39 (1): 44-84.DOI: 10.1016/j.biocel.2006.07.001.
17. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82 (1): 47–95. DOI: 10.1152/physrev.00018.2001.
18. Willcox JK, Ash SL,Catignani GL (2004) Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 44 (4): 275-295. DOI:10.1080/10408690490468489.
19. Halliwell B (2007) Biochemistry of oxidative stress. Biochem. Soc. trans. 35 (Pt 5): 1147–1150. DOI: 10.1042/BST0351147.
20. Valko M, Rhodes CJB, Moncol J, Izakovic MM, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 160 (1): 1-40. DOI:10.1016/j.cbi.2005.12.009.
21. Nishida N, Arizumi T, Takita M, Kitai S, Yada N, Hagiwara S, Inoue T, Minami Y, Ueshima K, Sakurai T, KudoM (2013) Reactive oxygen species induce epigenetic instability through the formation of 8-hydroxydeoxyguanosine in human hepatocarcinogenesis. Dig. Dis. 31 (5-6): 459–466. DOI:10.1159/000355245.
22. Khansari N, Shakiba Y, Mahmoudi M (2009) Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat. Inflamm. Allergy Drug Discov. 3 (1): 73–80. DOI:10.2174/187221309787158371.
23. Liu Z, Zhou T, Ziegler, AC, Dimitrion P, Zuo L (2017) Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid. Med. Cell Longev. 2017: 2525967. DOI:10.1155/2017/2525967.
24. Wojtunik-Kulesza KA, Oniszczuk A, Oniszczuk T, Waksmundzka-Hajnos M (2016) The influence of common free radicals and antioxidants on development of Alzheimer's disease. Biomed. Pharmacother. 78: 39–49. DOI:10.1016/j.biopha.2015.12.024.
25. Shi H, Noguchi N, Niki E (1999) Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation. Free Radic.Biol. Med. 27 (3-4): 334–346. DOI:10.1016/s0891-5849(99)000532.
26. Sies H (1997) Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 82 (2): 291–295. DOI:10.1113/expphysiol.1997.sp004024.
27. Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV (2018) ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic .Res. 52 (5): 507–543. DOI:10.1080/10715762.2018.1457217.
28. Oyewole AO, Birch-Machin MA (2015) Mitochondria-targeted antioxidants. FASEB J. 29 (12): 4766–4771. DOI: 10.1096/fj.15-275404.
29. Galley H. F (2010). Bench-to-bedside review: Targeting antioxidants to mitochondria in sepsis. Crit. Care 14 (4): 230. DOI:10.1186/cc9098.
30. Maqbool MA, Aslam M, Akbar W, Iqbal Z (2017) Biological importance of vitamins for human health: A review. J. Agric. Basic Sci. 2 (3): 50-58.
31. McDowell LR (2000). Vitamins in animal and human nutrition. John Wiley & Sons. DOI: 10.1002/9780470376911.
32. Alós E, Rodrigo, MJ, Zacarias L (2016) Manipulation of carotenoid content in plants to improve human health. Subcell. Biochem.79: 311–343. DOI:10.1007/978-3-319-39126-7_12.
33. Yaroshevich IA, Krasilnikov PM, Rubin AB (2015) Functional interpretation of the role of cyclic carotenoids in photosynthetic antennas via quantum chemical calculations. Comput. Theor. Chem. 1070: 27-32. DOI:10.1016/j.comptc.2015.07.016.
34. Berman J, Zorrilla-López U, Sandmann G, Capell T, Christou P, Zhu C (2017) The silencing of carotenoid β-Hydroxylases by RNA interference in different maize genetic backgrounds increases the β-Carotene content of the endosperm. Int. J. Mol. Sci. 18 (12): 2515. DOI:10.3390/ijms18122515.
35. Fiedor J, Burda K (2014) Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6 (2): 466-488. DOI: 10.3390/nu6020466.
36. Xavier AA, Pérez-Gálvez A (2016) Carotenoids as a source of antioxidants in the diet. Subcell. biochem. 79: 359–375. DOI:10.1007/978-3-319-39126-7_14.
37. Mazur M, Valko M (2009) low oxygen pressure (an EPR spectroscopy and computational study). Chem. Phys. Lett. 478 (4–6): 266–270. DOI: 10.1016/j.cplett.2009.07.088.
38. Gloria NF, Soares N, Brand C, Oliveira FL, Borojevic R, Teodoro A J (2014) Lycopene and beta-carotene induce cell-cycle arrest and apoptosis in human breast cancer cell lines. Anticancer Res. 34 (3): 1377–1386.
39. Karadas F, Erdoğan S, Kor D, Oto G, Uluman M (2016) The effects of different types of antioxidants (Se, vitamin E and carotenoids) in broiler diets on the growth performance, skin pigmentation and liver and plasma antioxidant concentrations. Rev. Bras. Cienc. Avic. 18: 101-116. DOI:10.1590/18069061-2015-0155.
40. Diener A, Rohrmann S (2016) Associations of serum carotenoid concentrations and fruit or vegetable consumption with serum insulin-like growth factor (IGF)-1 and IGF binding protein-3 concentrations in the Third National Health and Nutrition Examination Survey (NHANES III). J. Nutr. Sci. 5: e13. DOI:10.1017/jns.2016.1.
41. Serasanambati M, Chilakapati SR (2016) Function of nuclear factor kappa B (NF-kB) in human diseases-a review. South Ind. J. Biol. Sci. 2: 368–387. DOI: 10.22205/sijbs/2016/v2/i4/103443.
42. Kishimoto Y, Taguchi C, Saita E, Suzuki-Sugihara N, Nishiyama H, Wang W, Masuda Y, Kondo K. (2017) Additional consumption of one egg per day increases serum lutein plus zeaxanthin concentration and lowers oxidized low-density lipoprotein in moderately hypercholesterolemic males. Food Res. Int. 99 (Pt 2): 944–949. DOI:10.1016/j.foodres.2017.03.003.
43. Perrone S, Tei M, Longini M, Buonocore G (2016) The multiple facets of lutein: A call for further investigation in the perinatal period. Oxid. Med. Cell Longev. 2016: 5381540. DOI:10.1155/2016/5381540.
44. Rafi MM, Kanakasabai S, Gokarn SV, Krueger EG, BrightJJ (2015) Dietary lutein modulates growth and survival genes in prostate cancer cells. J. Med. Food. 18 (2): 173–181. DOI:10.1089/jmf.2014.0003.
45. Gammone MA, Riccioni G, D'Orazio N (2015) Carotenoids: potential allies of cardiovascular health?. Food Nutr. Res. 59: 26762. DOI:10.3402/fnr.v59.26762.
46. Holick MF (1996) Vitamin D and bone health. J. Nutr. 126 (4 Suppl): 1159S–64S. DOI:10.1093/jn/126.suppl_4.1159S.
47. Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am. J. Clin. Nutr. 88 (2): 491S–499S. DOI: 10.1093/ajcn/88.2.491S.
48. Giovannucci E (2009) Expanding roles of vitamin D. J. Clin. Endocrinol. Metab. 94 (2): 418–420. DOI:10.1210/jc.2008-2695.
49. Chiu KC, Chu A, Go VL, Saad MF (2004) Hypovitaminosis D is associated with insulin resistance and beta cell dysfunction. Am. J. Clin. Nutr. 79 (5): 820–825. DOI:10.1093/ajcn/79.5.820.
50. Mitri J, Muraru MD, Pittas AG (2011) Vitamin D and type 2 diabetes: a systematic review. Eur. J. Clin. Nutr. 65 (9): 1005–1015. DOI: 10.1038/ejcn.2011.118.
51. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, BenjaminEJ, D'Agostino, RB, Wolf M, Vasan RS (2008) Vitamin D deficiency and risk of cardiovascular disease. Circulation 117 (4): 503–511. DOI:10.1161/CIRCULATIONAHA.107.706127.
52. Ravani P, Malberti F, Tripepi G, Pecchini P, Cutrupi S, Pizzini P, Mallamaci F, & Zoccali C (2009) Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 75 (1): 88–95. DOI:10.1038/ki.2008.501.
53. Wiseman H (1993) Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS lett. 326 (1-3): 285–288. DOI:10.1016/0014-5793(93)81809-e.
54. Sardar S, Chakraborty A, Chatterjee M (1996) Comparative effectiveness of vitamin D3 and dietary vitamin E on peroxidation of lipids and enzymes of the hepatic antioxidant system in Sprague--Dawley rats. Int. J. Vitam. Nutr. Res. 66 (1): 39–45. DOI: 10.1080/01635589809514725.
55. Labudzynskyi DO, Zaitseva OV, Latyshko NV, Gudkova OO, VelikyMM (2015) Vitamin D3 contribution to the regulation of oxidative metabolism in the liver of diabetic mice. Ukr. Biochem. J. 87 (3): 75–90.
56. Kono K, Fujii H, Nakai K, Goto S, Kitazawa R, Kitazawa S, Shinohara M, Hirata M, Fukagawa M, Nishi S (2013) Anti-oxidative effect of vitamin D analog on incipient vascular lesion in non-obese type 2 diabetic rats. Am. J. Nephrol. 37 (2): 167–174. DOI:10.1159/000346808.
57. Zhong W, Gu B, Gu Y, Groome LJ, Sun J, Wang Y (2014) Activation of vitamin D receptor promotes VEGF and CuZn-SOD expression in endothelial cells. J. Steroid Biochem.Mol. Biol. 140: 56–62. DOI: 10.1016/j.jsbmb.2013.11.017.
58. Greń A (2013) Effects of vitamin E, C and D supplementation on inflammation and oxidative stress in streptozotocin-induced diabetic mice. Int. J. Vitam. Nutr. Res. 83 (3): 168–175.DOI:10.1024/0300-9831/a000156.
59. Hamden K, Carreau S, Jamoussi K, Ayadi F, Garmazi F, Mezgenni N, Elfeki A (2008) Inhibitory effects of 1alpha, 25dihydroxyvitamin D3 and Ajuga iva extract on oxidative stress, toxicity and hypo-fertility in diabetic rat testes. J. Physiol. Biochem. 64 (3): 231–239. DOI: 10.1007/BF03216108.
60. Kanikarla-Marie P, Jain SK (2016) 1,25(OH)2D3 inhibits oxidative stress and monocyte adhesion by mediating the upregulation of GCLC and GSH in endothelial cells treated with acetoacetate (ketosis). J. Steroid Biochem. Mol. Biol. 159: 94–101. DOI: 10.1016/j.jsbmb.2016.03.002.
61. Jain S K, Micinski D, Huning L, Kahlon G, Bass PF, Levine, SN (2014) Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur. J. Clin. Nutr. 68 (10): 1148–1153. DOI:10.1038/ejcn.2014.114.
62. Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr. Rev. 29 (6): 726–776. DOI:10.1210/er.2008-0004.
63. Evans, HM, Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential forreproduction. Science 56 (1458): 650–651. DOI:10.1126/science.56.1458.650.
64. Mustacich DJ, Bruno RS, Traber MG (2007) Vitamin E. Vitam. Horm. 76: 1–21. DOI:10.1016/S0083-6729(07)76001-6.
65. Burton GW, Cheeseman KH, Doba T, Ingold, KU, Slater TF (1983) Vitamin E as an antioxidant in vitro and in vivo. Ciba Found. Symp. 101: 4–18. DOI:10.1002/9780470720820.ch2.
66. Howard AC, McNeil, AK, McNeil PL (2011) Promotion of plasma membrane repair by vitamin E. Nat. Commun. 2: 597. DOI:https://doi.org/10.1038/ncomms1594.
67. Ventura C, Maioli M (2001) Protein kinase C control of gene expression. Crit. Rev. Eukaryot. Gene Expr. 11 (1-3): 243–267. PMID: 11693964.
68. Buchner K (2000) The role of protein kinase C in the regulation of cell growth and in signalling to the cell nucleus. J. Cancer Res. Clin. Oncol. 126 (1): 1–11. DOI:10.1007/pl00008458.
69. Azzi A, Boscoboinik D, Clément S, Marilley D, Ozer N K, Ricciarelli R, Tasinato A (1997) Alpha-tocopherol as a modulator of smooth muscle cell proliferation. Prostaglandins Leukot. Essent. Fatty Acids 57 (4-5): 507–514. DOI:10.1016/s0952-3278(97)90436-1.
70. Azzi A, Ricciarelli R, Zingg JM (2002) Non-antioxidant molecular functions of alpha-tocopherol (vitamin E). FEBS Lett. 519 (1-3): 8–10. DOI:10.1016/s0014-5793(02)02706-0.
71. Nishikimi M, Fukuyama R, Minoshima S, Shimizu N, Yagi K (1994) Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol.Chem. 269 (18): 13685–13688.DOI:10.1016/S0021-9258(17)36884-9.
72. Nishikimi M, Yagi K (1996) Biochemistry and molecular biology of ascorbic acid biosynthesis. Subcell. Biochem. 25: 17–39. DOI:10.1007/978-1-4613-0325-1_2.
73. Buettner GR, Moseley PL (1993) EPR spin trapping of free radicals produced by bleomycin and ascorbate. Free Radic. Res. Commun. 19 Suppl1: S89–S93. DOI:10.3109/10715769309056s89.
74. Bielski BH, Richter HW, Chan PC (1975) Some properties of the ascorbate free radical. Ann. N. Y. Acad. Sci. 258: 231–237. DOI:10.1111/j.1749-6632.1975.tb29283.x.
75. Padayatty SJ, Katz A, WangY, EckP, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J. Am. Coll. Nutr. 22 (1): 18–35. DOI:10.1080/07315724.2003.10719272.
76. Neužil J, Thomas SR, Stocker R (1997) Requirement for, promotion, or inhibition by α-tocopherol of radical-induced initiation of plasma lipoprotein lipid peroxidation. Free Radic. Biol. Med. 22 (1-2): 57-71. DOI:10.1016/s0891-5849(96)00224-9.
77. Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions?. FASEB J. 13 (9): 1007–1024. DOI:10.1096/fasebj.13.9.1007.
78. Poeggeler B, Saarela S, Reiter RJ, Tan DX, Chen LD, Manchester LC, Barlow-Walden LR (1994) Melatonin a highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann. N. Y Acad. Sci. 738: 419–420. DOI:10.1111/j.1749-6632.1994.tb21831.x.
79. García JA, Volt H, Venegas C, Doerrier C, Escames G, López LC, Acuña-Castroviejo D (2015) Disruption of the NF-κB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-α and blocks the septic response in mice. FASEB J. 29 (9): 3863–3875. DOI:10.1096/fj.15-273656.
80. Tan DX, Hardeland R, Manchester LC, Poeggeler B, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter, RJ (2003) Mechanistic and comparative studies of melatonin and classic antioxidants in terms of their interactions with the ABTS cation radical J. Pineal Res. 34 (4): 249–259. DOI:10.1034/j.1600-079x.2003.00037.x.
81. Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br. J. Anaesth. 110 (3): 472–480. DOI:10.1093/bja/aes577.
82. Gitto E, Tan DX, Reiter RJ, Karbownik M, Manchester LC, Cuzzocrea S, Fulia F, Barberi I (2001) Individual and synergistic antioxidative actions of melatonin: studies with vitamin E, vitamin C, glutathione and desferrioxamine (desferoxamine) in rat liver homogenates. J. Pharm. Pharmacol. 53 (10):1393–1401. DOI: 10.1211/0022357011777747.
83. Tan DX, Hardeland R, Manchester LC, Galano A, Reiter RJ (2014) Cyclic-3-hydroxymelatonin (C3HOM), a potent antioxidant, scavenges free radicals and suppresses oxidative reactions. Curr. Med. Chem. 21 (13): 1557–1565. DOI: 10.2174/0929867321666131129113146.
84. Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J. Pineal Res. 54 (3): 245–257. DOI: 10.1111/jpi.12010.
85. Dziegiel P, Murawska-Ciałowicz E, Jethon Z, Januszewska L, Podhorska-Okołów M, Surowiak P, Zawadzki M, Rabczyński J, Zabel M (2003) Melatonin stimulates the activity of protective antioxidative enzymes in myocardial cells of rats in the course of doxorubicin intoxication. J. Pineal Res. 35 (3): 183–187. DOI: 10.1034/j.1600-079x.2003.00079.x.
86. García JJ, Reiter RJ, Guerrero JM, Escames G, Yu BP, Oh CS, Muñoz-Hoyos A (1997) Melatonin prevents changes in microsomal membrane fluidity during induced lipid peroxidation. FEBS Lett. 408 (3): 297–300. DOI: 10.1016/s0014-5793(97)00447-x.
87. Mansouri A, Gaou I, De Kerguenec C, Amsellem S, Haouzi D, Berson A, Moreau A, Feldmann G, Lettéron P, Pessayre D, Fromenty B (1999) An alcoholic binge causes massive degradation of hepatic mitochondrial DNA in mice. Gastroenterol. 117 (1): 181–190. DOI: 10.1016/s0016-5085(99)70566-4.
88. Smith RA, Porteous CM, Coulter CV, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur. J. Biochem. 263 (3): 709-716. DOI: 10.1046/j.1432-1327.1999.00543.x.
89. Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J. Biol. Chem. 276 (7): 4588-4596. DOI: 10.1074/jbc.M009093200.
90. Lowes DA, Webster NR, Murphy MP, Galley HF (2013) Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis. Br. J. Anaesth. 110 (3): 472-480. DOI: 10.1093/bja/aes577.
91. Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ (2010) Changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. Camb. Philos. Soc .85: 607 -623. DOI: 10.1111/j.1469-185X.2009.00118.x.
92. Yang Y, Duan W, Jin Z, Yi W, Yan J, Zhang S, Wang N, Liang Z, Li Y, Chen W, Yi D, Yu S (2013) JAK 2/STAT 3 activation by melatonin attenuates the mitochondrial oxidative damage induced by myocardial ischemia/reperfusion injury. J. Pineal Res. 55 (3): 275-286. DOI: 10.1111/jpi.12070.
93. Huang WY, Jou MJ, Peng TI (2013) mtDNA T8993G mutation-induced F1F0-ATP synthase defect augments mitochondrial dysfunction associated with hypoxia/reoxygenation: the protective role of melatonin. PloS one 8 (11): e81546. DOI: 10.1371/journal.pone.0081546.
94. Doerrier C, García JA, Volt H, Díaz-Casado ME, Lima-Cabello E, Ortiz F, Luna-Sanchez M, Escames G, Lopez LC, Acuña-Castroviejo D (2015) Identification of mitochondrial deficits and melatonin targets in liver of septic mice by high-resolution respirometry. Life Sci. 121: 158-165. DOI: 10.1016/j.lfs.2014.11.031.
95. Zhang H, Liu D, Wang X, Chen X, Long Y, Chai W, Zhou X, Rui X, Zhang Q, Wang H, Yang Q (2013) Melatonin improved rat cardiac mitochondria and survival rate in septic heart injury. J. Pineal Res. 55 (1):1-6.DOI: 10.1111/jpi.12033.
96. Ren L, Wang Z, An L, Zhang Z, Tan K, Miao K,Tao Li, Cheng L, Zhang Z, Yang M, Wu Z, Tian J (2015) Dynamic comparisons of high-resolution expression profiles highlighting mitochondria-related genes between in vivo and in vitro fertilized early mouse embryos. Hum. Reprod. 30 (12): 2892-2911. DOI: 10.1093/humrep/dev228.
97. Zhao XM, Min JT, Du WH, Hao HS, Liu Y, Qin T, Wang D, Zhu HB (2015) Melatonin enhances the in vitro maturation and developmental potential of bovine oocytes denuded of the cumulus oophorus. Zygote 23 (4): 525-536. DOI: 10.1017/S0967199414000161.
98. Ionov M, Burchell V, Klajnert B, Bryszewska M, Abramov AY (2011) Mechanism of neuroprotection of melatonin against beta-amyloid neurotoxicity. Neurosci. 180: 229–237. DOI: 10.1016/j.neuroscience.2011.02.045.
99. Dragicevic N, Copes N, O’Neal‐Moffitt G, Jin J, Buzzeo R, Mamcarz M, Tan J, Cao C, Olcese JM, Arendash GW, Bradshaw PC (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: A mitochondrial protective role of melatonin membrane receptor signaling. J. Pineal Res. 51 (1): 75-86. DOI: 10.1111/j.1600-079X.2011.00864.x.
100. Teng YC, Tai YI, Huang HJ, Lin AM (2015) Melatonin ameliorates arsenite-induced neurotoxicity: Involvement of autophagy and mitochondria. Mol. Neurobiol. 52: 1015–1022. DOI: 10.1007/s12035-015-9250-y.
101. Escames G, León J, Macías M, Khaldy H, Acuña-Castroviejo D (2003) Melatonin counteracts lipopolysaccharide‐induced expression and activity of mitochondrial nitric oxide synthase in rats. FASEB J. 17 (8): 1-22. DOI: 10.1096/fj.02-0692fje.
102. Wang, X., Sirianni, A., Pei, Z., Cormier, K., Smith, K., Jiang, J., Zhou S, Wang H, Zhao R, Yano H, Kim JE, Li W, Kristal BS, Ferrante RJ, Friedlander (2011) The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J. Neurosci. 31 (41): 14496-14507. DOI: 10.1523/JNEUROSCI.3059-11.2011.
103. Kashani IR, Rajabi Z, Akbari M, Hassanzadeh G, Mohseni A, Eramsadati MK, Rafiee K, Beyer C, Kipp M, Zendedel A (2014) Protective effects of melatonin against mitochondrial injury in a mouse model of multiple sclerosis. Exp. Brain Res. 232 (9): 2835–2846. DOI: 10.1007/s00221-014-3946-5.
104. Liu LF, Qian ZH, Qin Q, Shi M, Zhang H, Tao XM, Zhu WP (2015) Effect of melatonin on oncosis of myocardial cells in the myocardial ischemia/reperfusion injury rat and the role of the mitochondrial permeability transition pore. Genet. Mol. Res. 14 (3): 7481-7489. DOI: 10.4238/2015.July.3.24.
105. Waseem M, Tabassum H, Parvez S (2016) Melatonin modulates permeability transition pore and 5-hydroxydecanoate induced KATP channel inhibition in isolated brain mitochondria. Mitochondrion 31: 1-8. DOI: 10.1016/j.mito.2016.08.005.
106. Zhao XM, Hao HS, Du WH, Zhao SJ, Wang HY, Wang N, Wang D, Liu Y, Qin T, Zhu HB (2016) Melatonin inhibits apoptosis and improves the developmental potential of vitrified bovine oocytes. J. Pineal Res. 60 (2): 132-141. DOI: 10.1111/jpi.12290.
107. Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G, Reiter RJ, Qu Y (2015) Melatonin prevents cell death and mitochondrial dysfunction via a SIRT 1‐dependent mechanism during ischemic‐stroke in mice. J. Pineal Res. 58 (1): 61-70. DOI: 10.1111/jpi.12193.
108. Jumnongprakhon P, Govitrapong P, Tocharus C, Tungkum W, Tocharus J (2014) Protective effect of melatonin on methamphetamine-induced apoptosis in glioma cell line. Neurotoxic. Res. 25 (3): 286-294. DOI: 10.1007/s12640-013-9419-y.
109. Chen J, Wang L, Wu C, Hu Q, Gu C, Yan F, Li J, Yan W, Chen G (2014) Melatonin-enhanced autophagy protects against neural apoptosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J. Pineal Res. 56 (1): 12-19. DOI: 10.1111/jpi.12086.
110. Reiter RJ, Tan DX, Paredes SD, Fuentes-Broto L (2010) Beneficial effects of melatonin in cardiovascular disease. Ann. Med. 42 (4): 276-285. DOI: 10.3109/07853890903485748.
111. Tengattini S, Reiter RJ, Tan DX, Terron MP, Rodella LF, Rezzani R (2008) Cardiovascular diseases: protective effects of melatonin. J. Pineal Res. 44 (1): 16-25. DOI: 10.1111/j.1600-079X.2007.00518.x.
112. Fu Z, Jiao Y, Wang J, Zhang Y, Shen M, Reiter RJ, Xi Q, Chen Y (2020) Cardioprotective role of melatonin in acute myocardial infarction. Front. Physiol. 11: 366. DOI: 10.3389/fphys.2020.00366.
113. Masana MI, Doolen S, Ersahin C, Al-Ghoul WM, Duckles SP, Dubocovich ML, Krause DN (2002) MT(2) melatonin receptors are present and functional in rat caudal artery. J. Pharmacol. Exp. Ther. 302 (3): 1295–1302. DOI: 10.1124/jpet.302.3.1295.
114. Saremi A, Arora R (2010) Vitamin E and cardiovascular disease. Am. J. Ther. 17 (3): e56-e65. DOI: 10.1097/MJT.0b013e31819cdc9a.
115. Esterbauer H, Dieber-Rotheneder M, Striegl G, Waeg G (1991) Role of vitamin E in preventing the oxidation of low-density lipoprotein. Am. J. Clin. Nutr. 53 (1): 314S-321S.
116. Reaven PD, Khouw A, Beltz WF, Parthasarathy S, Witztum JL (1993) Effect of dietary antioxidant combinations in humans. Protection of LDL by vitamin E but not by beta-carotene. Arterioscler. Thromb. 13 (4): 590-600. DOI: 10.1161/01.atv.13.4.590.
117. Ferré N, Camps J, Paul A, Cabré M, Calleja L, Osada J, Joven J (2001) Effects of high-fat, low-cholesterol diets on hepatic lipid peroxidation and antioxidants in apolipoprotein E-deficient mice. Mol. Cell. Biochem. 218 (1-2): 165–169. DOI: 10.1023/a:1007296919243.
118. Thomas SR, Leichtweis SB, Pettersson K, Croft KD, Mori TA, Brown AJ, Stocker R (2001) Dietary cosupplementation with vitamin E and coenzyme Q10 inhibits atherosclerosis in apolipoprotein E gene knockout mice. Arterioscler. Thromb. Vasc. Biol. 21 (4): 585-593. DOI: 10.1161/01.atv.21.4.585.
119. Stephens NG, Parsons A, Brown MJ, Schofield PM, Kelly F, Cheeseman K, Mitchinson MJ (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347 (9004): 781-786. DOI: 10.1016/s0140-6736(96)90866-1.
120. Kojda G, Kottenberg K (1999) Regulation of basal myocardial function by NO. Cardiovasc. Res. 41 (3): 514-523. DOI: 10.1016/s0008-6363(99)00208-4.
121. Sönmez MF, Narin F, Akkuş D, Ozdamar S (2009) Effect of melatonin and vitamin C on expression of endothelial NOS in heart of chronic alcoholic rats. Toxicol. Ind. Health 25 (6): 385–393. DOI: 10.1177/0748233709106444.
122. Srinivasan V (1997) Melatonin, biological rhythm disorders and phototherapy. Ind. J. Physiol. Pharmacol. 41 (4): 309-328. PMID: 10235654.
123. Reiter RJ (1998) Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 56 (3): 359–384. DOI: 10.1016/s0301-0082(98)00052-5.
124. Esposito Z, Belli L, Toniolo S, Sancesario G, Bianconi C, Martorana A (2013) Amyloid β, glutamate, excitotoxicity in Alzheimer's disease: are we on the right track?. CNS Neurosci.Ther. 19 (8): 549–555. DOI: 10.1111/cns.12095.
125. IcerMA, ArslanN, Gezmen-Karadag M (2021) Effects of vitamin E on neurodegenerative diseases: an update. Acta Neurobiol. Exp. 81 (1): 21–33. DOI: 10.21307/ane-2021-003.
126. Moreira PI, Cardoso SM, Santos MS, Oliveira CR (2006) The key role of mitochondria in Alzheimer's disease. J. Alzheimers Dis. 9 (2): 101–110. DOI: 10.3233/jad-2006-9202.
127. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim. Biophys. Acta. 1802 (1): 2–10. DOI: 10.1016/j.bbadis.2009.10.006.
128. Blass JP, Baker AC, Ko L, Black RS (1990) Induction of Alzheimer antigens by an uncoupler of oxidative phosphorylation. Arch. Neurol. 47 (8): 864–869. DOI: 10.1001/archneur.1990.00530080046009.
129. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, VintersHV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, PetersenRB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer's disease. J. Neurosci. 21 (9): 3017–3023. DOI: 10.1523/JNEUROSCI.21-09-03017.2001.
130. Golombek DA, Pévet P, Cardinali DP (1996) Melatonin effects on behavior: possible mediation by the central GABAergic system. Neurosci. Biobehav. Rev. 20 (3): 403–412. DOI: 10.1016/0149-7634(95)00052-6.
131. Naguib M, Samarkandi AH (2000) The comparative dose-response effects of melatonin and midazolam for premedication of adult patients: a double-blinded, placebo-controlled study. Anesth. Analg. 91 (2): 473–479. DOI: 10.1097/00000539-200008000-00046.
132. Johnson K, Page A, Williams H, Wassemer E, Whitehouse W (2002) The use of melatonin as an alternative to sedation in uncooperative children undergoing an MRI examination. Clin. Radiol. 57 (6): 502–506. DOI: 10.1053/crad.2001.0923.
133. Paula-Lima AC, Louzada PR, De Mello FG, Ferreira ST (2003) Neuroprotection against Abeta and glutamate toxicity by melatonin: are GABA receptors involved?. Neurotoxic. Res. 5 (5): 323–327. DOI: 10.1007/BF03033152.
134. Olcese J M, Cao C, Mori T, Mamcarz MB, Maxwell A, Runfeldt MJ, Wang L, Zhang C, Lin X, Zhang G, Arendash, GW (2009) Protection against cognitive deficits and markers of neurodegeneration by long‐term oral administration of melatonin in a transgenic model of Alzheimer disease. J. Pineal Res. 47 (1): 82-96. DOI: 10.1111/j.1600-079X.2009.00692.x
135. Zhou J, Zhang S, Zhao X, Wei T (2008) Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid‐β1–42. J. Pineal Res. 45 (2): 157-165. DOI: 10.1111/j.1600-079X.2008.00570.x.
136. Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP (2011) Melatonin in mitochondrial dysfunction and related disorders. Int. J. Alzheimers Dis. 2011: (326320). DOI: 10.4061/2011/326320.
137. Harding AE, Matthews S, Jones S, Ellis CJK, Booth IW, Muller DPR (1985) Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. New Engl. J. Med. 313 (1): 32-35. DOI: 10.1056/NEJM198507043130107.
138. Ouahchi K, Arita M, Kayden H, Hentati F, Ben Hamida M, Sokol R, Arai H, Inoue K, Mandel JL, Koenig M (1995) Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Nat. Genet. 9 (2): 141–145. DOI: 10.1038/ng0295-141.
139. Cavalier L, Ouahchi K, Kayden HJ, Di Donato S, Reutenauer L, Mandel JL, Koenig M (1998) Ataxia with isolated vitamin E deficiency: Heterogeneity of mutations and phenotypic variability in a large number of families. Am. J. Hum. Genet. 62 (2): 301–310. DOI: 10.1086/301699.
140. Behl C, Davis J, Cole GM, Schubert D (1992) Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem. Biophys. Res. Commun. 186 (2): 944–950. DOI: 10.1016/0006-291x(92)90837-b.
141. Behl C (2000) Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-beta estradiol and induces the activity of the transcription factor NF-kappaB. J. Neural. Transm. 107 (4): 393–407. DOI: 10.1007/s007020070082.
142. Magalhães J, Ascensão A, Marques F, Soares JM, Ferreira R, Neuparth MJ, Duarte JA (2005) Effect of a high-altitude expedition to a Himalayan peak (Pumori, 7,161 m) on plasma and erythrocyte antioxidant profile. Eur. J. Appl. Physiol. 93 (5-6): 726–732. DOI: 10.1007/s00421-004-1222-2.
143. Saito Y, Nishio K, Akazawa YO, Yamanaka K, Miyama A, Yoshida Y, Noguchi N, Niki E (2010) Cytoprotective effects of vitamin E homologues against glutamate-induced cell death in immature primary cortical neuron cultures: Tocopherols and tocotrienols exert similar effects by antioxidant function. Free Radic. Biol. Med. 49 (10): 1542–1549. DOI: 10.1016/j.freeradbiomed.2010.08.016.
144. Giraldo E, Lloret A, Fuchsberger T, Viña J (2014) Aβ and tau toxicities in Alzheimer's are linked via oxidative stress-induced p38 activation: protective role of vitamin E. Redox Biol. 2: 873–877. DOI:10.1016/j.redox.2014.03.002.
145. Montilla-López P, Muñoz-Agueda MC, Feijóo López M, Muñoz-Castañeda JR, Bujalance-Arenas I, Túnez-Fiñana I (2002) Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer's disease induced by okadaic acid in neuroblastoma cells. Eur. J. Pharmacol. 451 (3): 237–243. DOI: 10.1016/s0014-2999(02)02151-9.
146. Baydas G, Canatan H, Turkoglu A (2002) Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus. J. Pineal Res. 32 (4): 225–230. DOI: 10.1034/j.1600-079x.2002.01856.x.
147. Brömme HJ, Mörke W, Peschke D, Ebelt H, Peschke D (2000) Scavenging effect of melatonin on hydroxyl radicals generated by alloxan. J. Pineal Res. 29 (4): 201–208. DOI: 10.1034/j.1600-0633.2002.290402.x.
148. Ebelt H, Peschke D, Brömme HJ, Mörke W, BlumeR, Peschke E (2000) Influence of melatonin on free radical-induced changes in rat pancreatic beta-cells in vitro. J. Pineal Res. 28 (2): 65–72. DOI: 10.1034/j.1600-079x.2001.280201.x.
149. Nogueira TC, Lellis-Santos C, Jesus DS, Taneda M, Rodrigues SC, Amaral FG, Lopes AM, Cipolla-Neto J, Bordin S, Anhê GF (2011) Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response. Endocrinol. 152 (4): 1253–1263. DOI: 10.1210/en.2010-1088.
150. Sudnikovich EJ, Maksimchik YZ, Zabrodskaya SV, Kubyshin VL, Lapshina EA, Bryszewska M, Reiter RJ, Zavodnik IB (2007) Melatonin attenuates metabolic disorders due to streptozotocin-induced diabetes in rats. Eur. J. Pharmacol. 569 (3): 180–187. DOI: 10.1016/j.ejphar.2007.05.018.
151. Pierrefiche G, Laborit H. (1995) Oxygen free radicals, melatonin, and aging. Exp. Gerontol. 30 (3-4): 213–227. DOI: 10.1016/0531-5565(94)00036-3.
152. Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, Deftereos S, Tousoulis D (2019) The role of inflammation in diabetes: Current concepts and future perspectives. Eur. Cardiol. 14 (1): 50–59. DOI: 10.15420/ecr.2018.33.1.
153. Reiter RJ, Calvo JR, Karbownik M, Qi W, Tan DX (2000) Melatonin and its relation to the immune system and inflammation. Ann. N. Y. Acad. Sci. 917: 376–386. DOI: 10.1111/j.1749-6632.2000.tb05402.x.
154. Favero G, Franceschetti L, Bonomini F, Rodella LF, Rezzani R (2017) Melatonin as an anti-inflammatory agent modulating inflammasome activation. Int. J. Endocrinol. 2017: (1835195). DOI: 10.1155/2017/1835195.
155. Abdulwahab DA, El-Missiry MA, Shabana S, Othman AI, Amer ME (2021) Melatonin protects the heart and pancreas by improving glucose homeostasis, oxidative stress, inflammation and apoptosis in T2DM-induced rats. Heliyon 7 (3): e06474. DOI: 10.1016/j.heliyon.2021.e06474.
156. MooradianAD, Morley JE (1987) Micronutrient status in diabetes mellitus. Am. J. Clin. Nutr. 45 (5): 877–895. DOI: 10.1093/ajcn/45.5.877.
157. Weber P, BendichA, Schalch W (1996) Vitamin C and human health--a review of recent data relevant to human requirements. Int. J. Vitam. Nutr. Res. 66 (1): 19–30. PMID: 8698541.
158. Kadowaki S, Norman AW (1984) Pancreatic vitamin D-dependent calcium binding protein: biochemical properties and response to vitamin D. Arch. Biochem. Biophys. 233 (1): 228-236. DOI: 10.1016/0003-9861(84)90621-0.
159. Norman AW, Frankel BJ, Heldt AM, Grodsky GM (1980) Vitamin D deficiency inhibits pancreatic secretion of insulin. Science 209 (4458): 823-825. DOI: 10.1126/science.6250216.
160. Cade C, Norman AW (1986) Vitamin D3 improves impaired glucose tolerance and insulin secretion in the vitamin D-deficient rat in vivo. Endocrinol. 119 (1): 84-90. DOI: 10.1210/endo-119-1-84.
161. RiachyR, Vandewalle B, Moerman E, Belaich S, Lukowiak B, Gmyr V, Muharram G, Kerr Conte J, Pattou F (2006) 1,25-Dihydroxyvitamin D3 protects human pancreatic islets against cytokine-induced apoptosis via down-regulation of the Fas receptor. Apoptosis 11 (2): 151–159. DOI: 10.1007/s10495-006-3558-z.
162. Higgs DR, Engel JD, Stamatoyannopoulos G (2012) Thalassaemia. Lancet 379 (9813): 373–383. DOI: 10.1016/S0140-6736(11)60283-3.
163. Korkina L, De Luca C, Deeva I, Perrotta S, Nobili B, Passi S, Puddu P (2000) L1 effects on reactive oxygen (ROS) and nitrogen species (RNS) release, hemoglobin oxidation, low molecular weight antioxidants, and antioxidant enzyme activities in red and white blood cells of thalassemic patients. Transfus. Sci. 23 (3): 253–254. DOI: 10.1016/s0955-3886(00)000990.
164. Yuan J, Bunyaratvej A, Fucharoen S, Fung C, Shinar E, Schrier SL (1995) The instability of the membrane skeleton in thalassemic red blood cells. Blood 86 (10): 3945–3950. PMID: 7579365.
165. Ozment CP, Turi JL (2009) Iron overload following red blood cell transfusion and its impact on disease severity. Biochim. Biophys. Acta. 1790 (7): 694–701. DOI: 10.1016/j.bbagen.2008.09.010.
166. Huser HJ, Rieber EE, Berman AR (1967) Experimental evidence of excess hemolysis in the course of chronic iron deficiency anemia. J. Lab. Clin. Med. 69 (3): 405–414. PMID: 6019402.
167. Efferth T, Schwarzl SM, Smith J, Osieka R (2006) Role of glucose-6-phosphate dehydrogenase for oxidative stress and apoptosis. Cell Death Differ. 13 (3): 527–530. DOI: 10.1038/sj.cdd.4401807.
168. Vanella A, Campisi A, Castorina C, Sorrenti V, Attaguile G, Samperi P, Azzia N, Di Giacomo C, Schilirò G (1991) Antioxidant enzymatic systems and oxidative stress in erythrocytes with G6PD deficiency: effect of deferoxamine. Pharmacol. Res. 24 (1): 25–31. DOI: 10.1016/1043-6618(91)90061-2.
169. Beutler E, Grabowski G (1983) The metabolic basis of inherited disease, eds. JB Stanbury JB, Wyngaarden JB, Fredrickson DS, Goldstein JL, Brown MS (McGraw-Hill, New York), pp1629-1953. PMID: 7579365.
170. Abdul-Razzak KK, Almomany EM, NusierMK, Obediat AD, Salim AM (2008) Antioxidant vitamins and glucose-6-phosphate dehydrogenase deficiency in full-term neonates. Ger. Med. sci. 24 (6): Doc 10. PMID: 19675737.
171. Paul S, Naaz S, Ghosh AK, Mishra S, Chattopadhyay A, Bandyopadhyay D (2018) Melatonin chelates iron and binds directly with phenylhydrazine to provide protection against phenylhydrazine induced oxidative damage in red blood cells along with its antioxidant mechanisms: an in vitro study. Melatonin Res. 1 (1): 1-20. DOI: 10.32794/mr11250001.
172. Allegra M, Gentile C, Tesoriere L, Livrea MA (2002) Protective effect of melatonin against cytotoxic actions of malondialdehyde: an in vitro study on human erythrocytes J. Pineal Res. 32 (3): 187–193. DOI: 10.1034/j.1600-079x.2002.1o852.x.
173. Nogués MR, Giralt M, Romeu M, Mulero M, Sánchez-Martos V, Rodríguez E, Acuña-Castroviejo D, Mallol J (2006) Melatonin reduces oxidative stress in erythrocytes and plasma of senescence-accelerated mice. J. Pineal Res. 41 (2): 142–149. DOI: 10.1111/j.1600-079X.2006.00344.x.
174. Sultana T, DeVita MV, Michelis MF (2016) Oral vitamin C supplementation reduces erythropoietin requirement in hemodialysis patients with functional iron deficiency. Int.Urol. Nephrol. 48 (9): 1519–1524. DOI: 10.1007/s11255-016-1309-9.
175. Chou AC, Broun GO Jr, Fitch CD (1978) Abnormalities of iron metabolism and erythropoiesis in vitamin E-deficient rabbits. Blood 52 (1): 187–195. PMID: 656627.
176. Wolbach SB, Howe PR (1925) Tissue changes following deprivation of fat-soluble a vitamin. J. Exp. Med. 42 (6): 753–777. DOI: 10.1084/jem.42.6.753.
177. Hodges RE, Sauberlich HE, Canham JE, Wallace DL, Rucker RB, Mejia LA, Mohanram M (1978) Hematopoietic studies in vitamin A deficiency. Am. J .Clin. Nutr. 31 (5): 876–885. DOI:10.1093/ajcn/31.5.876.
178. Revin VV, Gromova NV, Revina ES, Samonova AY, Tychkov AY, Bochkareva SS, Moskovkin AA, Kuzmenko TP (2019) The influence of oxidative stress and natural antioxidants on morphometric parameters of red blood cells, the hemoglobin oxygen binding capacity, and the activity of antioxidant enzymes. BioMed Res. Int. 2019: 2109269. DOI: 10.1155/2019/2109269.
179. Bothwell TH, Bradlow BA, Jacobs P, Keeley K, Kramer S, Seftel H, Zail S (1964) Iron metabolism in scurvy with special reference to erythropoiesis. Br. J. Haematol. 10: 50–58. DOI: 10.1111/j.1365-2141.1964.tb00677.x
180. Lynch SR, Cook JD (1980) Interaction of vitamin C and iron. Ann. N. Y. Acad. Sci. 355: 32–44. DOI: 10.1111/j.1749-6632.1980.tb21325.x.
181. Ajibade TO, Oyagbemi AA, Durotoye LA, Omóbòwálé TO, Asenuga ER, Olayemi FO (2017) Modulatory effects of melatonin and vitamin  C on oxidative stress-mediated haemolyticanaemia and associated cardiovascular dysfunctions in rats. J. Complement Integr. Med. 14 (1): 20150082. DOI: 10.1515/jcim-2015-0082.
182. Montilla P, Cruz A, PadilloFJ, Tunez I, Gascon F, Munoz MC, Gomez M, Pera C (2001) Melatonin versus vitamin E as protective treatment against oxidative stress after extra‐hepatic bile duct ligation in rats. J. Pineal Res. 31 (2): 138-144. DOI: 10.1034/j.1600-079x.2001.310207.x.
183. Karaoz E, Gultekin F, Akdogan M, Oncu M, Gokcimen A (2002) Protective role of melatonin and a combination of vitamin C and vitamin E on lung toxicity induced by chlorpyrifos-ethyl in rats. Exp. Toxicol. Pathol. 54 (2): 97–108. DOI: 10.1078/0940-2993-00236.
184. El-Sokkary GH (2008) Melatonin and vitamin C administration ameliorate diazepam-induced oxidative stress and cell proliferation in the liver of rats. Cell Prolif. 41 (1): 168–176. DOI: 10.1111/j.1365-2184.2007.00503.x.
185. Akinci A, Esrefoglu M, Cetin A, Ates B (2015) Melatonin is more effective than ascorbic acid and β-carotene in improvement of gastric mucosal damage induced by intensive stress. Arch. Med. Sci. 11 (5): 1129–1136. DOI: 10.5114/aoms.2015.54870.
186. Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ (2015) Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20 (10): 18886-18906. DOI: 10.3390/molecules201018886
Published
2022-09-30
How to Cite
[1]
Mukhopadhyay, M., Majumder, R., Banerjee, A. and Bandyopadhyay, D. 2022. A comparative overview on the role of melatonin and vitamins as potential antioxidants against oxidative stress induced degenerative infirmities: An emerging concept. Melatonin Research. 5, 3 (Sep. 2022), 254-277. DOI:https://doi.org/https://doi.org/10.32794/mr112500131.