Melatonin and its ubiquitous effects on cell function and survival: A review

Melatonin and cell function and survival

  • Wilson Mitsuo Tatagiba Kuwabara Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
  • Patricia Rodrigues Lourenço Gomes Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
  • Jéssica Andrade-Silva Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
  • José Maria Soares Júnior Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
  • Fernanda Gaspar Amaral Department of Physiology, Federal University of São Paulo, São Paulo, Brazil
  • José Cipolla-Neto Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
Keywords: Melatonin, Cell Biology, Cell Death, Mitochondria

Abstract

Melatonin, a phylogenic conserved molecule, presents in almost all living organisms and it is believed to be originated to protect the unicellular organisms from oxidative products which were emerged from aerobic respiration. Even with the acquisition of a variety of other functions along evolution, the crucial autocrine, paracrine and endocrine actions of melatonin in the regulation of cell biology were well preserved. The molecular mechanisms involved in the cell cycle that determine survival and death need to be tightly regulated. Changes in these mechanisms can trigger pathologies that compromise the entire balance of the body. In this context, melatonin acts on cellular homeostasis by regulating the main molecular mechanisms that sustain life and control death, such as synthesis and degradation of protein, energy supply and pathways which trigger death to remove the defective cell or any microorganism from the tissues. Thus, this review aims to briefly present the action mechanisms of melatonin, in addition to discussing its fundamental role in cellular processes such as synthesis and degradation of protein, mitochondrial function and cell death control.

References

Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2013) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J. Pineal Res. 54:127-138, doi:10.1111/jpi.12026.
2. Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: An ancient molecule that makes oxygen metabolically tolerable. J. Pineal Res. 59: 403-419. doi:10.1111/jpi.12267.
3. Reiter RJ, Rosales-Corral S, Tan DX, Jou MJ, Galano A, Xu B (2017) Melatonin as a mitochondria-targeted antioxidant: one of evolution's best ideas. Cell Mol. Life Sci. 74: 3863-3881. doi:10.1007/s00018-017-2609-7.
4. Tan DX, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ (2010) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol. Rev. Camb. Philos. Soc. 85: 607-623, doi:10.1111/j.1469-185X.2009.00118.x.
5. Tan DX, ReiterRJ (2018) Mitochondria: The birth place, battle ground and the site of melatonin metabolism in cells. Melatonin Res. 2: 44-66, doi:10.32794/mr11250011.
6. Lee K, Choi GH, Back K (2022) Functional characterization of serotonin n-acetyltransferase in archaeon thermoplasma volcanium. Antioxidants (Basel) 11: (3): 596. doi:10.3390/antiox11030596.
7. Erlich SS, Apuzzo ML (1985) The pineal gland: anatomy, physiology, and clinical significance. J. Neurosurg. 63: 321-341, doi:10.3171/jns.1985.63.3.0321.
8. Vernadakis AJ, Bemis WE, Bittman EL (1998) Localization and partial characterization of melatonin receptors in amphioxus, hagfish, lamprey, and skate. Gen. Comp. Endocrinol. 110: 67-78, doi:10.1006/gcen.1997.7042.
9. Vollrath L (1981) The pineal organ. Springer-Verlag: Heildberg, Germany Volume VI/7, p. 659.
10. Cipolla-Neto J, Amaral FGD (2018) Melatonin as a hormone: New physiological and clinical insights. Endocr. Rev. 39: 990-1028, doi:10.1210/er.2018-00084.
11. Albuquerque YML, Silva WED, Souza FAL, Teixeira VW, Teixeira Á (2020) Melatonin on hypothyroidism and gonadal development in rats: a review. JBRA Assist Reprod. 24: 498-506. doi:10.5935/1518-0557.20200053.
12. Shi L, Li N, Bo L, Xu Z (2013) Melatonin and hypothalamic-pituitary-gonadal axis. Curr. Med. Chem. 20: 2017-2031, doi:10.2174/09298673113209990114.
13. Khalil SS, Aziz JA, Ismail KA, El-Malkey NF (2021) Comparative protective effects of. Can. J. Physiol. Pharmacol. 99: 708-719, doi:10.1139/cjpp-2020-0499.
14. Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ (2014) Melatonin, energy metabolism, and obesity: a review. J. Pineal Res. 56: 371-381, doi:10.1111/jpi.12137.
15. Gomes PRL, Vilas-Boas EA, Leite EA, Munhoz AC, Lucena CF, Amaral FGD, Carpinelli AR, Cipolla-Neto J (2021) Melatonin regulates maternal pancreatic remodeling and B-cell function during pregnancy and lactation. J. Pineal Res. 71 (1): e12717. doi:10.1111/jpi.12717.
16. Ferreira DS, Amaral FG, Mesquita CC, Barbosa APL, Lellis-Santos C, Turati AO, Santos LR, Sollon CS, Gomes PR, Faria JA, et al. (2021) Maternal melatonin programs the daily pattern of energy metabolism in adult offspring. Plos One 7 (6): 38795. doi:10.1371/journal.pone.0038795.
17. Baltatu OC, Senar S, Campos LA, Cipolla-Neto J (2019) Cardioprotective melatonin: translating from proof-of-concept studies to therapeutic use. Int. J. Mol. Sci. 20 (18): 4342. doi:10.3390/ijms20184342.
18. Baltatu OC, Amaral FG, Campos LA, Cipolla-Neto J (2017) Melatonin, mitochondria and hypertension. Cell Mol. Life Sci. 74: 3955-3964, doi:10.1007/s00018-017-2613-y.
19. Campos LA, Bueno C, Barcelos IP, Halpern B, Brito LC, Amaral FG, Baltatu OC, Cipolla-Neto J (2020) Melatonin therapy improves cardiac autonomic modulation in pinealectomized patients. Front. Endocrinol. (Lausanne) 11: 239. doi:10.3389/fendo.2020.00239.
20. Auld F, Maschauer EL, Morrison I, Skene DJ, Riha RL (2017) Evidence for the efficacy of melatonin in the treatment of primary adult sleep disorders. Sleep Med. Rev. 34: 10-22. doi:10.1016/j.smrv.2016.06.005.
21. Dollins AB, Zhdanova IV, Wurtman RJ, Lynch HJ, Deng MH (1994) Effect of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc. Natl. Acad. Sci. USA 91: 1824-1828, doi:10.1073/pnas.91.5.1824.
22. Krieg SM, Slawik H, Meyer B, Wiegand M, Stoffel M (2012) Sleep disturbance after pinealectomy in patients with pineocytoma WHO°I. Acta Neurochir. (Wien) 154: 1399-1405. doi:10.1007/s00701-012-1409-y.
23. Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan DX, Sugino N, Reiter RJ (2009) Melatonin and the ovary: Physiological and pathophysiological implications. Fertil. Steril. 92: 328-343. doi:10.1016/j.fertnstert.2008.05.016.
24. Tamura H, Takasaki A, Taketani T, Tanabe M, Lee L, Tamura I, Maekawa R, Aasada H, YamagataY, Sugino N (2014) Melatonin and female reproduction. J. Obstet. Gynaecol. Res. 40: 1-11. doi:10.1111/jog.12177.
25. Gomes PRL, Motta-Teixeira LC, Gallo CC, Carmo Buonfiglio DD, Camargo LS, Quintela T, Reiter RJ, Amaral FGD, Cipolla-Neto J (2021) Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming. Gen. Comp. Endocrinol. 300: 113633. doi:10.1016/j.ygcen.2020.113633.
26. Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, Tamura I, Maekawa R, Sato S, Taketani T, et al. (2020) Importance of melatonin in assisted reproductive technology and ovarian aging. Int. J. Mol. Sci. 21 (3): 1135. doi:10.3390/ijms21031135.
27. Valias GR, Gomes PRL, Amaral FG, Alnuaimi S, Monteiro D, O'Sullivan S, Zangaro R, Cipolla-NetoJ, Acuna J, Baltatu OC, et al. (2022) Urinary angiotensinogen-melatonin ratio in gestational diabetes and preeclampsia. Front. Mol. Biosci. 9: 800638. doi:10.3389/fmolb.2022.800638.
28. Amaral FG, Castrucci AM, Cipolla-Neto J, Poletini MO, Mendez N, Richter HG, Sellix MT (2014) Environmental control of biological rhythms: Effects on development, fertility and metabolism. J. Neuroendocrinol. 26: 603-612. doi:10.1111/jne.12144.
29. Klein DC, Weller JL (1970) Indole metabolism in pineal gland - a circadian rhythm in n-acetyltransferase. Science 169 (3950): 1093-5. doi:DOI 10.1126/science.
30. Jockers R, Delagrange P, Dubocovich ML, Markus RP, Renault N, Tosini G, Cecon E, Zlotos DP (2016) Update on melatonin receptors: IUPHAR Review 20. Brit. J. Pharmacol. 173: 2702-2725. doi:10.1111/bph.13536.
31. Reiter RJ, Tan DX, Manchester LC, Terron MP, Flores LJ, Koppisepi S (2007) Medical implications of melatonin: receptor-mediated and receptor-independent actions. Adv. Med. Sci-Poland. 52: 11-28.
32. Benitez-King G, Rios A, Martinez A, Anton-Tay F (1996) In vitro inhibition of Ca2+/calmodulin-dependent kinase II activity by melatonin. Biochim. Biophys. Acta 1290: 191-196.
33. Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 42: 28-42. doi:10.1111/j.1600-079X.2006.00407.x.
34. Bartness TJ, Powers JB, Hastings MH, Bittman EL, Goldman BD (1993) The timed infusion paradigm for melatonin delivery - what has it taught us about the melatonin signal, its reception, and the photoperiodic control of seasonal responses. J. Pineal Res. 15: 161-190.
35. Macchi MM, Bruce JN (2004)) Human pineal physiology and functional significance of melatonin. Front. Neuroendocrinol. 25: 177-195. doi:10.1016/j.yfrne.2004.08.001.
36. Barrett P, Bolborea M (2012) Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. J. Pineal Res. 52: 376-388. doi:10.1111/j.1600-079X.2011.00963.x.
37. Lewis JE, Ebling FJP (2017) Tanycytes as regulators of seasonal cycles in neuroendocrine function. Front. Neurol. 8: 79. doi:10.3389/fneur.2017.00079.
38. Dardente H (2012) Melatonin-dependent timing of seasonal reproduction by the pars tuberalis: pivotal roles for long daylengths and thyroid hormones. J. Neuroendocrinol. 24: 249-266. doi:10.1111/j.1365-2826.2011.02250.x.
39. Dardente H, Hazlerigg DG, Ebling FJ (2014) Thyroid hormone and seasonal rhythmicity. Front. Endocrinol. (Lausanne) 5: 19. doi:10.3389/fendo.2014.00019.
40. Voeltz GK, Rolls MM, Rapoport TA (2002) Structural organization of the endoplasmic reticulum. EMBO Rep. 3 (10): 944-50. doi: 10.1093/embo-reports/kvf202.
41. Wu X, RapoportTA (2018) Mechanistic insights into ER-associated protein degradation. Curr. Opin. Cell Biol. 53: 22-28. doi:10.1016/j.ceb.2018.04.004.
42. Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu. Rev. Biochem. 74: 739-89. doi: 10.1146/annurev.biochem.73.011303.074134.
43. Ma Y, Hendershot LM (2001) The unfolding tale of the unfolded protein response. Cell 107 (7): 827-30. doi:10.1016/S0092-8674(01)00623-7.
44. Hetz C, Zhang K, Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 21: 421-438. doi:10.1038/s41580-020-0250-z.
45. Tabas I, Ron D (2011) Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13 (3): 184-90. doi:10.1038/ncb0311-184.
46. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell 6 (5): 1099-108. doi:10.1016/S1097-2765(00)00108-8.
47. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D (2000) Perk is essential for translational regulation and cell survival during the unfolded protein response. Mol. Cell 5 (5): 897-904. doi:10.1016/S1097-2765(00)80330-5.
48. Harding HP, Zhang Y, Ron D (1999) Protein translation and folding are coupled by an endoplasmic- reticulum-resident kinase. Nature 397 (6716): 271-4. doi:10.1038/16729.
49. Hu H, Tian M, Ding C, Yu S (2018) The C/EBP homologous protein (CHOP) Transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front. Immunol. 9: 3083. doi:10.3389/fimmu.2018.03083.
50. Sommer T, Jarosch E (2002) BiP binding keeps ATF6 at bay. Dev. Cell 3 (1): 1-2. doi:10.1016/S1534-5807(02)00210-1.
51. Shimizu Y, Hendershot LM (2009) Oxidative folding: Cellular strategies for dealing with the resultant equimolar production of reactive oxygen species. Antioxid. Redox Signal. 11 (9): 2317-31. doi:10.1089/ars.2009.2501.
52. Missiroli S, Patergnani S, Caroccia N, Pedriali G, Perrone M, Previati M, Wieckowski MR, Giorgi C (2018) Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis. 9 (3): 329. doi:10.1038/s41419-017-0027-2.
53. Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: The ER/mitochondria ca2+ liaison. Sci. STKE 2004 (215): re1. doi:10.1126/stke.2152004re1.
54. Area-Gomez E, Schon EA (2016) Mitochondria-associated ER membranes and Alzheimer disease. Cur. Opi. Gene De. 38: 90-96, doi:10.1016/j.gde.2016.04.006.
55. Herrera-Cruz MS, Simmen T (2017) Over six decades of discovery and characterization of the architecture at mitochondria-associated membranes (MAMs). Adv. Exp. Med. Biol. 997: 13-31. doi: 10.1007/978-981-10-4567-7_2.
56. Rodríguez-Arribas M, Yakhine-Diop SMS, Pedro JMB-S, Gómez-Suaga P, Gómez-Sánchez R, Martínez-Chacón G, Fuentes JM, González-Polo A, Niso-Santano M (2017) Mitochondria-associated membranes (MAMs): Overview and its role in parkinson’s disease. Mol. Neurobiol. 54: 6287-6303. doi:10.1007/s12035-016-0140-8.
57. Theurey P, Rieusset J (2017) Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases. Trends Endocrinol. Metab. 28 (1): 32-45. doi:10.1016/j.tem.2016.09.002.
58. Park SW, Ozcan U (2013) Potential for therapeutic manipulation of the UPR in disease. Semin. Immunopathol. 35 (3): 351-73. doi:10.1007/s00281-013-0370-z.
59. Sozen E, Karademir B, Ozer NK (2015) Basic mechanisms in endoplasmic reticulum stress and relation to cardiovascular diseases. Free Radic. Biol. Med. 78: 30-41. doi:10.1016/j.freeradbiomed.2014.09.031.
60. Fernández A, Ordõñez R, Reiter RJ, González-Gallego J, Mauriz JL (2015) Melatonin and endoplasmic reticulum stress: Relation to autophagy and apoptosis. J. Pineal Res. 59 (3): 292-307. doi:10.1111/jpi.12264.
61. Yu L, Li B, Zhang M, Jin Z, Duan W, Zhao G, Yang Y, Liu Z, Chen W, Wang S, et al. (2016) Melatonin reduces PERK-eIF2α-ATF4-mediated endoplasmic reticulum stress during myocardial ischemia–reperfusion injury: role of RISK and SAFE pathways interaction. Apoptosis 21 (7): 809-24 doi:10.1007/s10495-016-1246-1.
62. Lin YW, Chen TY, Hung CY, Tai SH, Huang SY, Chang CC, Hung HY, Lee EJ (2018) Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. Int. J. Mol, Med. 42: 182-192. doi:10.3892/ijmm.2018.3607.
63. Moreira AJ, Ordoñez R, Cerski CT, Picada JN, García-Palomo A, Marroni NP, Mauriz JL, González-Gallego J (2015) Melatonin activates endoplasmic reticulum stress and apoptosis in rats with diethylnitrosamine-induced hepatocarcinogenesis. PLoS One 10: e0144517. doi:10.1371/journal.pone.0144517.
64. Zha L, Fan L, Sun G, Wang H, Ma T. Zhong F, Wei W (2012) Melatonin sensitizes human hepatoma cells to endoplasmic reticulum stress-induced apoptosis. J. Pineal. Res. 52: 322-331, doi:10.1111/j.1600-079X.2011.00946.x.
65. Song J, Kim OY (2017) Melatonin modulates neuronal cell death induced by endoplasmic reticulum stress under insulin resistance condition. Nutrients 9 (6): 5 93. doi:10.3390/nu9060593.
66. Xu W, Lu X, Zheng J, Li T, Gao L, Lenahan C, Shao A, Zhang J, Yu J (2018) Melatonin protects against neuronal apoptosis via suppression of the ATF6/CHOP pathway in a rat model of intracerebral hemorrhage. Front. Neurosci.12: 638-638.
67. Vriend J, Reiter RJ (2015) The Keap1-Nrf2-antioxidant response element pathway: A review of its regulation by melatonin and the proteasome. Mol. Cell Endocrinol. 401: 213-20. doi:10.1016/j.mce.2014.12.013.
68. Hardeland R (2017). Melatonin and the electron transport chain. Cell Mol. Life Sci. 74 (21): 3883-3896. doi:10.1007/s00018-017-2615-9.
69. Murphy MP (2008) How mitochondria produce reactive oxygen species. Biochem. J. 417 (1): 1-13doi:10.1042/bj20081386.
70. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 41: 445-502. doi:10.1111/j.1469-185x.1966.tb01501.x.
71. Shadel GS, Horvath TL (2015) Mitochondrial ROS signaling in organismal homeostasis. Cell 163 (3): 560-569. doi:10.1016/j.cell.2015.10.001.
72. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y, Dong W (2016) ROS and ROS-mediated cellular signaling. Oxid. Med. Cell Longev. 2016: 4350965. doi:10.1155/2016/4350965.
73. Lemasters JJ (2005) Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8 (1): 3-5.doi:10.1089/rej.2005.8.3.
74. Archer SL (2013) Mitochondrial dynamics — mitochondrial fission and fusion in human diseases. N. Engl. J. Med. 369 (23): 2236-51. doi:10.1056/nejmra1215233.
75. Chiong M, Cartes-Saavedra B, Norambuena-Soto I, Mondaca-Ruff D, Morales PE, García-MiguelM, Mellado R (2014) Mitochondrial metabolism and the control of vascular smooth muscle cell proliferation. Front. Cell Dev. Biol. 2: 72. doi:10.3389/fcell.2014.00072.
76. Ong S-B, Hall AR, Hausenloy DJ (2012) Mitochondrial dynamics in cardiovascular health and disease. Antioxid. Redox Signal. 19 (4): 400-14. doi:10.1089/ars.2012.4777.
77. Yu T, Sheu SS, Robotham JL, Yoon Y (2008) Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. Cardiovasc. Res. 79 (2): 341-51. doi:10.1093/cvr/cvn104.
78. Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, El Arid JM, Mouton S, Sebti Y, et al. (2014) Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 30 (7):554-64. doi:10.1161/CIRCULATIONAHA.113.008476.
79. Ugarte-Uribe B, Müller HM, Otsuki M, Nickel W, García-Sáez AJ (2014) Dynamin-related protein 1 (Drp1) promotes structural intermediates of membrane division. J. Biol. Chem. 289 (44): 30645-30656. doi:10.1074/jbc.M114.575779.
80. Bach D, Pich S, Soriano FX, Vega N, BaumgartnerB, Oriola J, Daugaard JR, Lloberas J, Camps M, Zierath J.R, et al. (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism: A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278 (19): 17190-7. doi:10.1074/jbc.M212754200.
81. Chen L, Liu T, Tran A, Lu X, Tomilov AA, Davies V, Cortopassi G, Chiamvimonvat N, Bers DM, Votruba M, et al. (2012) OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability. J. Am. Heart Assoc. 1 (5): e003012. doi:10.1161/JAHA.112.003012.
82. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK, Li J, Baranov SV, Leronni D, Mihalik AC, He Y, et al. (2017) Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. Proc. Natl. Acad. Sci. USA. 114 (38): E7997-E8006. doi:10.1073/pnas.1705768114.
83. Tjong YW, Li MF, Hung MW, Fung ML (2008) Melatonin ameliorates hippocampal nitric oxide production and large conductance calcium-activated potassium channel activity in chronic intermittent hypoxia. J. Pineal Res. 44 (3): 234-43. doi:10.1111/j.1600-079X.2007.00515.x.
84. Escames G, López LC, Ortiz F, Ros E, Acuña-Castroviejo D (2006) Age-dependent lipopolysaccharide-induced iNOS expression and multiorgan failure in rats: Effects of melatonin treatment. Exp. Gerontol. 41 (11): 1165-73. doi:10.1016/j.exger.2006.09.002.
85. Poeggeler B, Saarela S, Reiter RJ, Tan DX, Chen LD, Manchester LC, Barlow‐Walden LR (1994) Melatonin—A highly potent endogenous radical scavenger and electron donor: new aspects of the oxidation chemistry of this indole accessed in vitro. Ann. N. Y. Acad. Sci. 738: 419-20. doi:10.1111/j.1749-6632.1994.tb21831.x.
86. Rosen J, Than NN, Koch D, Poeggeler B, Laatsch H, Hardeland R (2006), Interactions of melatonin and its metabolites with the ABTS cation radical: Extension of the radical scavenger cascade and formation of a novel class of oxidation products, C2-substituted 3-indolinones. J. Pineal Res. 41 (4): 374-81. doi:10.1111/j.1600-079X.2006.00379.x.
87. Ding M, Feng N, Tang D, Feng J, Li Z, Jia M, Liu Z, Gu X, Wang Y, Fu F, et al. (2018) Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway. J. Pineal Res. 65 (2): e12491 doi:10.1111/jpi.12491.
88. Ma S, Dong Z (2019) Melatonin attenuates cardiac reperfusion stress by improving opa1-related mitochondrial fusion in a Yap-Hippo pathway-dependent manner. J. Cardiovasc. Pharmacol. 73 (1): 27-39. doi:10.1097/FJC.0000000000000626.
89. Ma S, Chen J, Feng J, Zhang R, Fan M, Han D, Li X, Li C, Ren J, Wang Y, et al. (2018) Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxid. Med. Cell Longev. 2018: 9286458. doi:10.1155/2018/9286458.
90. Sun B, Yang S, Li S, Hang C (2018). Melatonin upregulates nuclear factor erythroid-2 related factor 2 (Nrf2) and mediates mitophagy to protect against early brain injury after subarachnoid hemorrhage. Med. Sci. Monit. 24: 6422-6430. doi:10.12659/msm.909221.
91. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407 (6805): 770-6. doi:10.1038/35037710.
92. Sainz RM, Mayo JC, Rodriguez C, Tan DX, Lopez-Burillo S, Reiter RJ (2003) Melatonin and cell death: Differential actions on apoptosis in normal and cancer cells. Cell Mol. Life Sci. 60 (7): 1407-26. doi:10.1007/s00018-003-2319-1.
93. Ishizuya-Oka A, Hasebe T, Shi YB (2010) Apoptosis in amphibian organs during metamorphosis. Apoptosis 15: 350-364, doi:10.1007/s10495-009-0422-y.
94. Vermes I, Haanen C, Steffens-Nakken H, Reutellingsperger C (1995) A novel assay for apoptosis flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J. Immunol. Methods 184 (1): 39-51. doi:10.1016/0022-1759(95)00072-I.
95. Nagata S (2018) Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36: 489-517. doi:10.1146/annurev-immunol-042617-053010.
96. YuL, Chen Y, Tooze SA (2017) Autophagy pathway: Cellular and molecular mechanisms. Autophagy 14 (2): 207-215. doi:10.1080/15548627.2017.1378838.
97. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat. Rev. Mol. Cell Biol. 19 (6): 349-364. doi:10.1038/s41580-018-0003-4.
98. Tatagiba Kuwabara WM, Curi R, Alba-Loureiro TC (2017) Autophagy is impaired in neutrophils from streptozotocin-induced diabetic rats. Front. Immunol. 8: 24. doi:10.3389/fimmu.2017.00024.
99. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: Host cell death and inflammation. Nat. Rev. Microbiol. 7 (2): 99-109. doi:10.1038/nrmicro2070.
100. Malik A, Kanneganti TD (2017) Inflammasome activation and assembly at a glance. J. Cell Sci. 130 (23): 3955-3963. doi:10.1242/jcs.207365.
101. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526 (7575): 660-5. doi:10.1038/nature15514.
102. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: The expanding network of non-apoptotic cell death pathways. Nat. Rev. Mol. Cell Biol. 15 (2): 135-47. doi:10.1038/nrm3737.
103. Choi K, Kim J, Kim G, Choi C (2009) Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species. Curr. Neurovasc. Res. 6 (4): 213-22. doi:10.2174/156720209789630375.
104. Kushnareva Y, Newmeyer DD (2010) Bioenergetics and cell death. Ann. N. Y. Acad. Sci. 1201: 50-57. doi: 10.1111/j.1749-6632.2010.05633.x.
105. Shaheen M, Cheema Y, ShahbazAU, Bhattacharya SK, Weber KT (2011) Intracellular calcium overloading and oxidative stress in cardiomyocyte necrosis via a mitochondriocentric signal-transducer-effector pathway. Exp. Clin. Cardiol. 16 (4): 109-15.
106. Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K (2017) Melatonin, a full service anti-cancer agent: Inhibition of initiation, progression and metastasis. Int. J. Mol. Sci. 18 (4): 843. doi:10.3390/ijms18040843.
107. García-Santos G, Martin V, Rodríguez-Blanco J, Herrera F, Casado-Zapico S, Sánchez-Sánchez AM, Antolín I, Rodríguez C (2012) Fas/Fas ligand regulation mediates cell death in human Ewing's sarcoma cells treated with melatonin. Br. J. cancer 106: 1288-1296. doi:10.1038/bjc.2012.66.
108. Perdomo J, Cabrera J, Estévez F, Loro J, Reiter RJ, Quintana J (2013) Melatonin induces apoptosis through a caspase-dependent but reactive oxygen species-independent mechanism in human leukemia Molt-3 cells. J. Pineal Res. 55 (2): 195-206. doi:10.1111/jpi.12062.
109. Cos S, Mediavilla MD, Fernández R, González-Lamuño D, Sánchez-Barceló EJ (2002) Does melatonin induce apoptosis in MCF-7 human breast cancer cells in vitro? J. Pineal Res. 32 (2): 90-6doi:10.1034/j.1600-079x.2002.1821.x.
110. HoijmanE, Rocha Viegas L, Keller Sarmiento MI, Rosenstein RE, Pecci A (2004) Involvement of Bax protein in the prevention of glucocorticoid-induced thymocytes apoptosis by melatonin. Endocrinology 145 (1): 418-25. doi:10.1210/en.2003-0764.
111. Espino J, Bejarano I, Redondo PC, Rosado JA, Barriga C, Reiter RJ, Pariente JA, Rodríguez AB (2010). Melatonin reduces apoptosis induced by calcium signaling in human leukocytes: Evidence for the involvement of mitochondria and bax activation. J. Membr. Biol. 233 (1-3): 105-18. doi:10.1007/s00232-010-9230-0.
112. Ding K, Xu J, Wang H, Zhang L, Wu Y, Li T (2015) Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem. Int. 91: 46-54. doi:10.1016/j.neuint.2015.10.008.
113. Liu C, Jia Z, Zhang X, Hou J, Wang L, Hao S, Ruan X, Yu Z, Zheng Y (2012) Involvement of melatonin in autophagy-mediated mouse hepatoma H22 cell survival. Int. Immunopharmacol. 12 (2): 394-401. doi:10.1016/j.intimp.2011.12.012.
114. San-Miguel B, Crespo I, Vallejo D, Álvarez M, Prieto J, González-GallegoJ, Tuñõn MJ (2014) Melatonin modulates the autophagic response in acute liver failure induced by the rabbit hemorrhagic disease virus. J. Pineal Res. 56 (3): 313-21. doi:10.1111/jpi.12124.
115. Liu Z, Gan L, Xu Y, Luo D, Ren Q, Wu S, Sun, C (2017) Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J. Pineal Res. 63: e12414-e12414. doi:10.1111/jpi.12414.
116. Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, et al. (2018) Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res. 64 (2): doi:10.1111/jpi.12449.
117. Huang Y, Lu D, Ma W, Liu J, Ning Q, Tang F, Li L (2022) miR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages. Mol. Immuno.l 143: 68-76. doi:10.1016/j.molimm.2022.01.002.
118. Liu XM, Ma L, Schekman R (2021) Selective sorting of microRNAs into exosomes by phase-separated YBX1 condensates. Elife 10: e71982. doi:10.7554/eLife.71982.
119. Xu C, Wu A, Zhu H, Fang H, Xu L, Ye J, Shen J (2013) Melatonin is involved in the apoptosis and necrosis of pancreatic cancer cell line SW-1990 via modulating of Bcl-2/Bax balance. Biomed. Pharmacother. 67: 133-139. doi:https://doi.org/10.1016/j.biopha.2012.10.005.
120. Kim S-H, Lee S-M (2008) Cytoprotective effects of melatonin against necrosis and apoptosis induced by ischemia/reperfusion injury in rat liver. J. Pineal Res. 44: 165-171. doi:10.1111/j.1600-079X.2007.00504.x.
121. Muñoz-Casares FC, Padillo FJ, Briceño J, Collado JA, Muñoz-Castañeda JR, Ortega R, Cruz A, Túnez I, Montilla P, Pera C, et al. (2006) Melatonin reduces apoptosis and necrosis induced by ischemia/reperfusion injury of the pancreas. J. Pineal Res. 40: 195-203. doi:10.1111/j.1600-079X.2005.00291.x.
Published
2022-06-30
How to Cite
[1]
Kuwabara, W., Gomes, P., Andrade-Silva, J., Soares Júnior, J., Amaral, F. and Cipolla-Neto, J. 2022. Melatonin and its ubiquitous effects on cell function and survival: A review. Melatonin Research. 5, 2 (Jun. 2022), 192-208. DOI:https://doi.org/https://doi.org/10.32794/mr112500129.