Melatonin and cancer: Exploring gene networks and functional categories

Gene networks in melatonin-treated cancer

  • Luiz Chuffa Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618–689, São Paulo, Brazil
  • Robson Francisco Carvalho Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618–689, São Paulo, Brazil
  • Victória Larissa Schimidt Camargo Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618–689, São Paulo, Brazil
  • Sarah Santiloni Cury Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618–689, São Paulo, Brazil
  • Raquel Fantin Domeniconi Department of Structural and Functional Biology, UNESP - São Paulo State University, Institute of Biosciences, Botucatu, 18618–689, São Paulo, Brazil
  • Debora Aparecida Pires de Campos Zuccari Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP, 15090–000, Brazil
  • Fábio Rodrigues Ferreira Seiva Department of Chemical and Biological Sciences, São Paulo State University (UNESP), Institute of Bioscience, Botucatu, 18618–689, São Paulo, Brazil
Keywords: Melatonin, cancer, target genes, regulatory network, functional enrichment, gene mining

Abstract

     While melatonin is known for its multifaceted properties and its potential to combat cancer, there has been limited exploration of the cancer-melatonin interaction at the gene network level. One of the ways to better understand the molecular mechanisms of melatonin’s anti-cancer effects is to use text-mining strategies to extract relevant information that creates knowledge networks of entities and their associations. In this study, we mined gene-publication associations to search for genes most relevant to the terms of “melatonin” and “cancer”. A total of 152 genes were identified and ranked, among which 15 were kinase-related and three G-protein coupled receptor genes. The hub genes (STAT3, JUN, TP53, MAPK3, EP300, SRC, HSP90AA1, AKT1, ESR1, and IL6) were involved with several pathways in cancer. After examining the melatonin-treated cancers, we mapped 25 upregulated and 51 downregulated genes; these were strongly associated with cancer hallmarks such as resisting cell death, sustaining proliferative signaling, and inducing invasion and metastasis. Upregulated genes showed molecular functions including apoptotic protease activator, caspase activator, enzyme regulator, and protein binding, whereas the downregulated genes affected protein kinase activities, transcription factor binding, protein, enzyme, DNA, and promoter bindings. By connecting gene subsets, we detected a closer relationship among breast, hepatocellular, prostate, and oral cancers, in addition to neuroblastoma and osteosarcoma in terms of changes in melatonin-related signaling pathways. TCGA data were analyzed to understand the impact of gene signatures on survival of patients, and melatonin-downregulated genes were associated with longer survival of patients with glioblastoma, bladder, breast, colon, stomach, liver, lung, and ovarian carcinomas. These results provide a global view of gene interaction networks in melatonin-treated cancers and their functional value, opening new opportunities to consider melatonin for cancer therapy.


References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA. Cancer J. Clin. 71 (3): 209-249. DOI: 10.3322/caac.21660.
2. Bray F, Laversanne M, Weiderpass E, Soerjomataram I (2021) The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127 (16): 3029-3030. DOI: 10.1002/cncr.33587.
3. Fitzmaurice C, Abate D, Abbasi N, Abbastabar H, Abd-Allah F, Abdel-Rahman O, Abdelalim A, Abdoli A, Abdollahpour I, Abdulle ASM, Abebe ND, et al. (2019) Global burden of disease cancer: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 5 (12): 1749-1768. DOI: 10.1001/jamaoncol.2019.2996).
4. Nussinov R, Tsai CJ, Jang H (2021) Anticancer drug resistance: An update and perspective. Drug Resist. Updat. 59: 100796. DOI: 10.1016/j.drup.2021.100796.
5. Tufail AB, Ma YK, Kaabar MKA, Martinez F, Junejo AR, Ullah I, Khan R (2021) Deep learning in cancer diagnosis and prognosis prediction: A minireview on challenges, recent trends, and future directions. Comput. Math. Methods Med. 2021: 9025470. DOI: 10.1155/2021/9025470.
6. Hanahan D (2022) Hallmarks of cancer: New dimensions. Cancer Discov. 12 (1): 31-46. DOI: 10.1158/2159-8290.CD-21-1059.
7. Creixell P, Schoof EM, Erler JT, Linding R (2012) Navigating cancer network attractors for tumor-specific therapy. Nat. Biotechnol. 30 (9): 842-848. DOI: 10.1038/nbt.2345.
8. Davoodvandi A, Nikfar B, Reiter RJ, Asemi Z (2022) Melatonin and cancer suppression: insights into its effects on DNA methylation. Cell Mol. Biol. Lett. 27 (1): 73. DOI: 10.1186/s11658-022-00375-z.
9. Hardeland R (2014) Melatonin, noncoding RNAs, messenger RNA stability and epigenetics--evidence, hints, gaps and perspectives. Int. J. Mol. Sci. 15 (10): 18221-18252. DOI: 10.3390/ijms151018221.
10. Chuffa LGA, Carvalho RF, Justulin LA, Cury SS, Seiva FRF, Jardim-Perassi BV, Zuccari D, Reiter RJ (2020) A meta-analysis of microRNA networks regulated by melatonin in cancer: Portrait of potential candidates for breast cancer treatment. J. Pineal Res. 69 (4): e12693. DOI: 10.1111/jpi.12693.
11. Cohen M, Lippman M, Chabner B (1978) Role of pineal gland in aetiology and treatment of breast cancer. Lancet 2 (8094): 814-816. DOI: 10.1016/s0140-6736(78)92591-6.
12. Talib WH (2018) Melatonin and cancer hallmarks. Molecules 23 (3): 518. DOI: 10.3390/molecules23030518.
13. Hill SM, Belancio VP, Dauchy RT, Xiang S, Brimer S, Mao L, Hauch A, Lundberg PW, Summers W, Yuan L, Frasch T, Blask DE (2015) Melatonin: an inhibitor of breast cancer. Endocr. Relat. Cancer. 22 (3): R183-204. DOI: 10.1530/ERC-15-0030.
14. Mediavilla MD, Sanchez-Barcelo EJ, Tan DX, Manchester L, Reiter RJ (2010) Basic mechanisms involved in the anti-cancer effects of melatonin. Curr. Med. Chem. 17 (36): 4462-4481. DOI: 10.2174/092986710794183015.
15. Cruz EMS, Concato VM, de Morais JMB, Silva TF, Inoue FSR, de Souza Cremer M, Bidoia DL, Machado RRB, de Almeida Chuffa LG, Mantovani MS, Panis C, Pavanelli WR, et al. (2023) Melatonin modulates the Warburg effect and alters the morphology of hepatocellular carcinoma cell line resulting in reduced viability and migratory potential. Life Sci. 319: 121530. DOI: 10.1016/j.lfs.2023.121530.
16. Ashrafizadeh M, Ahmadi Z, Yaribeygi H, Sathyapalan T, Jamialahmadi T, Sahebkar A (2021) Antitumor and protective effects of melatonin: The potential roles of MicroRNAs. Adv. Exp. Med. Biol. 1328: 463-471. DOI: 10.1007/978-3-030-73234-9_31.
17. Chuffa LG, Alves MS, Martinez M, Camargo IC, Pinheiro PF, Domeniconi RF, Junior LA, Martinez FE (2016) Apoptosis is triggered by melatonin in an in vivo model of ovarian carcinoma. Endocr. Relat. Cancer. 23 (2): 65-76. DOI: 10.1530/ERC-15-0463.
18. Zonta YR, Martinez M, Camargo IC, Domeniconi RF, Lupi Junior LA, Pinheiro PF, Reiter RJ, Martinez FE, Chuffa LG (2017) Melatonin reduces angiogenesis in serous papillary ovarian carcinoma of ethanol-preferring rats. Int. J. Mol. Sci. 18 (4): 763. DOI: 10.3390/ijms18040763.
19. Blask DE, Hill SM, Dauchy RT, Xiang S, Yuan L, Duplessis T, Mao L, Dauchy E, Sauer LA (2011) Circadian regulation of molecular, dietary, and metabolic signaling mechanisms of human breast cancer growth by the nocturnal melatonin signal and the consequences of its disruption by light at night. J. Pineal Res. 51 (3): 259-269. DOI: 10.1111/j.1600-079X.2011.00888.x.
20. Bonmati-Carrion MA, Tomas-Loba A (2021) Melatonin and cancer: A polyhedral network where the source matters. Antioxidants 10 (2): 210. DOI: 10.3390/antiox10020210.
21. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME (2014) Breast cancer and circadian disruption from electric lighting in the modern world. CA. Cancer J. Clin. 64 (3): 207-218. DOI: 10.3322/caac.21218.
22. Cucielo MS, Cesario RC, Silveira HS, Gaiotte LB, Dos Santos SAA, de Campos Zuccari DAP, Seiva FRF, Reiter RJ, de Almeida Chuffa LG (2022) Melatonin reverses the warburg-type metabolism and reduces mitochondrial membrane potential of ovarian cancer cells independent of MT1 receptor activation. Molecules 27 (14): 4350. DOI: 10.3390/molecules27144350.
23. Gaiotte LB, Cesário RC, Silveira HS, De Morais Oliveira DA, Cucielo MS, Romagnoli GG, Kaneno R, De Campos Zuccari DAP, Reiter RJ, Chuffa LGdA (2022) Combination of melatonin with paclitaxel reduces the TLR4-mediated inflammatory pathway, PD-L1 levels, and survival of ovarian carcinoma cells. Melatonin Res. 5 (1): 34-51. DOI: 10.32794/mr112500118.
24. Chuffa LGDA, Carvalho RF, Seiva FR, Zuccari DAPdC, Reiter RJ (2021) Melatonergic index as a prognostic biomarker of reproductive organ cancers: correlations with metabolic parameters as well as clock genes PER1 and TIMELESS. Melatonin Res. 4 (2): 299-315. DOI: 10.32794/mr11250096.
25. Kinker GS, Oba-Shinjo SM, Carvalho-Sousa CE, Muxel SM, Marie SK, Markus RP, Fernandes PA (2016) Melatonergic system-based two-gene index is prognostic in human gliomas. J. Pineal Res. 60 (1): 84-94. DOI: 10.1111/jpi.12293.
26. Lv JW, Zheng ZQ, Wang ZX, Zhou GQ, Chen L, Mao YP, Lin AH, Reiter RJ, Ma J, Chen YP, Sun Y (2019) Pan-cancer genomic analyses reveal prognostic and immunogenic features of the tumor melatonergic microenvironment across 14 solid cancer types. J. Pineal Res. 66 (3): e12557. DOI: 10.1111/jpi.12557.
27. Maleki M, Khelghati N, Alemi F, Younesi S, Asemi Z, Abolhasan R, Bazdar M, Samadi-Kafil H, Yousefi B (2021) Multiple interactions between melatonin and non-coding RNAs in cancer biology. Chem. Biol. Drug Des. 98 (3): 323-340. DOI: 10.1111/cbdd.13849.
28. Lachmann A, Schilder BM, Wojciechowicz ML, Torre D, Kuleshov MV, Keenan AB, Ma'ayan A (2019) Geneshot: search engine for ranking genes from arbitrary text queries. Nucleic Acids Res. 47 (W1): W571-W577. DOI: 10.1093/nar/gkz393.
29. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47 (D1): D607-D613. DOI: 10.1093/nar/gky1131.
30. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13 (11): 2498-2504. DOI: 10.1101/gr.1239303.
31. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 8 (4): S11. DOI: 10.1186/1752-0509-8-S4-S11.
32. Iannuccelli M, Micarelli E, Surdo PL, Palma A, Perfetto L, Rozzo I, Castagnoli L, Licata L, Cesareni G (2020) CancerGeneNet: linking driver genes to cancer hallmarks. Nucleic Acids Res. 48 (D1): D416-D421. DOI: 10.1093/nar/gkz871.
33. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 14: 128. DOI: 10.1186/1471-2105-14-128.
34. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, et al. (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 44 (W1): W90-97. DOI: 10.1093/nar/gkw377.
35. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B (2019) WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 47 (W1): W199-W205. DOI: 10.1093/nar/gkz401.
36. Tang Z, Kang B, Li C, Chen T, Zhang Z (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res. 47 (W1): W556-W560. DOI: 10.1093/nar/gkz430.
37. Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat. Biotechnol. 33 (5): 495-502. DOI: 10.1038/nbt.3192.
38. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21 (16): 3448-3449. DOI: 10.1093/bioinformatics/bti551.
39. Ge SX, Jung D, Yao R (2020) ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 36 (8): 2628-2629. DOI: 10.1093/bioinformatics/btz931.
40. Menyhart O, Harami-Papp H, Sukumar S, Schafer R, Magnani L, de Barrios O, Gyorffy B (2016) Guidelines for the selection of functional assays to evaluate the hallmarks of cancer. Biochim. Biophys. Acta. 1866 (2): 300-319. DOI: 10.1016/j.bbcan.2016.10.002.
41. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res. 19 (9): 1639-1645. DOI: 10.1101/gr.092759.109.
42. Metsalu T, Vilo J (2015) ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 43 (W1): W566-570. DOI: 10.1093/nar/gkv468.
43. Starruss J, de Back W, Brusch L, Deutsch A (2014) Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology. Bioinformatics 30 (9): 1331-1332. DOI: 10.1093/bioinformatics/btt772.
44. Tran TD, Pham DT (2021) Identification of anticancer drug target genes using an outside competitive dynamics model on cancer signaling networks. Sci. Rep. 11 (1): 14095. DOI: 10.1038/s41598-021-93336-z.
45. Tan D-X, Hardeland R (2021) The reserve/maximum capacity of melatonin's synthetic function for the potential dimorphism of melatonin production and its biological significance in mammals. Molecules 26 (23): 7302. DOI: 10.3390/molecules26237302.
46. Bhattacharya S, Patel KK, Dehari D, Agrawal AK, Singh S (2019) Melatonin and its ubiquitous anticancer effects. Mol. Cell. Biochem. 462 (1-2): 133-155. DOI: 10.1007/s11010-019-03617-5.
47. Gurunathan S, Qasim M, Kang M-H, Kim J-H (2021) Role and therapeutic potential of melatonin in various type of cancers. Onco Targets Ther. 14: 2019–2052. DOI: 10.2147/OTT.S298512.
48. Zhao Y, Wang C, Goel A (2022) A combined treatment with melatonin and andrographis promotes autophagy and anticancer activity in colorectal cancer. Carcinogenesis 43 (3): 217-230. DOI: 10.1093/carcin/bgac008.
49. Reiter RJ, Sharma R, Rosales-Corral S, Manucha W, Chuffa LGA, Zuccari DAPC (2021) Melatonin and pathological cell interactions: Mitochondrial glucose processing in cancer cells. Int. J. Mol. Sci. 22 (22): 12494. DOI: 10.3390/ijms222212494.
50. Mihanfar A, Yousefi B, Azizzadeh B, Majidinia M (2022) Interactions of melatonin with various signaling pathways: implications for cancer therapy. Cancer Cell Int. 22 (1): 420. DOI: 10.1186/s12935-022-02825-2.
51. González A, Alonso-González C, González-González A, Menéndez-Menéndez J, Cos S, Martínez-Campa C (2021) Melatonin as an adjuvant to antiangiogenic cancer treatments. Cancers 13 (13): 3263. DOI: 10.3390/cancers13133263.
52. Korkmaz A, Sanchez-Barcelo EJ, Tan DX, Reiter RJ (2009) Role of melatonin in the epigenetic regulation of breast cancer. Breast Cancer Res. Treat. 115 (1): 13-27. DOI: 10.1007/s10549-008-0103-5.
53. Capote-Moreno A, Ramos E, Egea J, López-Muñoz F, Gil-Martín E, Romero A (2019) Potential of melatonin as adjuvant therapy of oral cancer in the era of epigenomics. Cancers 11 (11): 1712. DOI: 10.3390/cancers11111712.
54. Zhou L, Zhang C, Yang X, Liu L, Hu J, Hou Y, Tao H, Sugimura H, Chen Z, Wang L, Chen K (2021) Melatonin inhibits lipid accumulation to repress prostate cancer progression by mediating the epigenetic modification of CES1. Clin. Transl. Med. 11 (6): e449. DOI: 10.1002/ctm2.449.
55. Davoodvandi A, Nikfar B, Reiter RJ, Asemi Z (2022) Melatonin and cancer suppression: insights into its effects on DNA methylation. Cell Mol. Biol. Lett. 27 (1): 73. DOI: 10.1186/s11658-022-00375-z.
56. Targhazeh N, Reiter RJ, Rahimi M, Qujeq D, Yousefi T, Shahavi MH, Mir SM (2022) Oncostatic activities of melatonin: Roles in cell cycle, apoptosis, and autophagy. Biochimie. 200: 44-59. DOI: 10.1016/j.biochi.2022.05.008.
57. Zhang J, Jiang H, Du K, Xie T, Wang B, Chen C, Reiter RJ, Cen B, Yuan Y (2021) Pan-cancer analyses reveal genomics and clinical characteristics of the melatonergic regulators in cancer. J. Pineal Res. 71 (3): e12758. DOI: 10.1111/jpi.12758.
58. Chuffa LGA, Reiter RJ, Lupi LA (2017) Melatonin as a promising agent to treat ovarian cancer: molecular mechanisms. Carcinogenesis 38 (10): 945-952. DOI: 10.1093/carcin/bgx054.
59. de Almeida Chuffa LG, Seiva FRF, Cucielo MS, Silveira HS, Reiter RJ, Lupi LA (2019) Mitochondrial functions and melatonin: a tour of the reproductive cancers. Cell Mol. Life Sci. 76 (5): 837-863. DOI: 10.1007/s00018-018-2963-0.
60. Li Y, Li S, Zhou Y, Meng X, Zhang JJ, Xu DP, Li HB (2017) Melatonin for the prevention and treatment of cancer. Oncotarget 8 (24): 39896-39921. DOI: 10.18632/oncotarget.16379.
61. Reiter RJ, Sharma R, Ma Q, Rorsales-Corral S, de Almeida Chuffa LG (2020) Melatonin inhibits Warburg-dependent cancer by redirecting glucose oxidation to the mitochondria: a mechanistic hypothesis. Cell Mol. Life Sci. 77 (13): 2527-2542. DOI: 10.1007/s00018-019-03438-1.
Published
2023-12-31
How to Cite
[1]
Chuffa, L., Carvalho, R., Camargo, V.L., Cury, S., Domeniconi, R., Zuccari, D.A. and Seiva, F.R. 2023. Melatonin and cancer: Exploring gene networks and functional categories. Melatonin Research. 6, 4 (Dec. 2023), 431-451. DOI:https://doi.org/https://doi.org/10.32794/mr112500161.
Section
Research Articles