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ABSTRACT 

 

     A systematic rational search for newly designed melatonin derivatives, was performed using a 

computer-assisted protocol. A total of 116 derivatives were generated by adding functional groups 

(i.e., -OH, -NH2, -SH and -COOH) to the melatonin structure. A selection score (SS) was built to 

sample the search space, simultaneously considering ADME (absorption, distribution, 

metabolism, excretion) properties, toxicity and manufacturability (i.e., synthetic accessibility). 

The search characterized the whole set of designed melatonin derivatives and allowed the selection 

of a reduced subset of 20 melatonin derivatives that are expected to be the most promising, 

regarding drug-like behavior. For this subset, several reactivity indices were estimated, as well as 

their pKa values. According to the gathered data, 5 melatonin derivatives have been identified as 

the most likely candidates to act as chemical antioxidant (directly scavenging free radicals, by 

electron transfer and/or H transfer). All of them are predicted to be better for that purpose than 

melatonin itself or trolox (a water-soluble vitamin E analog). The findings from this work are 

expected to motivate further investigations on these molecules, using both theoretical and 

experimental approaches. 

 

Keywords: free radical scavenger; computer-aided design; electron transfer; hydrogen transfer; 

reaction mechanisms; reactivity; ADMET. 

 

 

1. INTRODUCTION 

 

     Oxidative stress (OS) and chemical agents against it are currently the focus of numerous 

investigations. The interest in both, oxidative damage to biomolecules and its prevention by 

chemical species (usually referred to as antioxidants) is well justified. There is ample evidence 

that OS compromises human health leading to various diseases such as different kinds of cancers, 
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cardiovascular and neurodegenerative disorders (1-6). At the same time, there is also abundant 

data supporting the protective effects of varied chemicals against OS and associated diseases. 

Although naturally occurring molecules have been the most widely studied in this context, there 

is an increased interest in designing molecules capable of exerting such protection. 

     Among natural antioxidants, melatonin (N-acetyl-5-methoxytryptamine, Scheme 1) is one of 

the most comprehensively studied. The role of melatonin and its metabolites for fighting OS has 

been extensively documented (7-41).Moreover, it has been proposed that one of the main functions 

of melatonin is to protect living organisms from OS,(42) where it acts as a mitochondria-targeted 

antioxidant (43). Some of the melatonin’s features make this molecule a particularly appealing 

antioxidant: 

− Melatonin is ubiquitous, and has been found not only in the pineal gland but in numerous 

organs (44-54) as well as in the plant kingdom (47, 55).  

− Melatonin can easily cross physiological barriers due to its amphiphilicity and medium size 

(56-60).  

− Melatonin has very low toxicity. Melatonin intake doses up to 1g daily have been proven 

to be safe (61-66). 

− Melatonin’s protection against OS is a continuous process that is not diminished by its 

metabolism since many of its metabolites are also antioxidants (32, 46, 67-69). Moreover, 

the combined effects of melatonin and its metabolites are expected to deactivate several 

equivalents of oxidants (70, 71).  

− Melatonin and its metabolites are versatile antioxidants, acting as free radical scavengers 

and metal chelators, mediating enzymatic protection and boosting the DNA repair 

machinery (45, 71-75).  

     These features are in line with those described as required for ideal antioxidants (76). Therefore, 

it is only logical that, inspired for the appealing features of melatonin, the design and synthesis of 

melatonin derivatives is an emerging research area (68, 77-87). There is already evidence that 

some of these new compounds can be efficient antioxidants (68, 77-86). However, to the best of 

our knowledge there are no previous systematic searches for designing antioxidants derived from 

melatonin’s framework. 

 
Scheme 1. Melatonin structure 

     A rational way to perform such a systematic search is starting by using computer-assisted 

protocols, which significantly reduce costs and expedite the process. Thus, that is the strategy 

followed here. The search mainly consisted on modifying the melatonin structure through the 

inclusion of different functional groups, specially chosen to potentiate versatile antioxidant 

activity, into all the available positions of the indole ring. Then using absorption, distribution, 

metabolism, excretion and toxicity (ADMET) properties a subset of the most promising candidates 

was chosen. For that reduced space, several reactivity indices were estimated using electronic 

structure calculations within the framework of the Density Functional Theory (DFT). They were 

used to select a few molecules, among the generated pool, which are novel molecules proposed 

for the first time as melatonin derivatives with high probabilities of being excellent multipurpose 
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antioxidants. The presented results are expected to motivate further investigations on these 

molecules, using both theoretical and experimental approaches. 

2. MATERIALS AND METHODS 

2.1. Physicochemical parameters 

     Several physicochemical parameters that are considered relevant for absorption, distribution, 

metabolism and excretion (ADME) properties were estimated for all the designed melatonin 

derivatives, using Molinspiration Property Calculation Service (www.munilnsiration.com) and 

DruLiTo software (http://www.niper.gov.in/pi_dev_tools/DruLiToWeb/DurLiTo_index.html). 

The estimated parameters are those necessary to investigate if the designed melatonin derivatives 

satisfy Lipinski’s rule of five (88), Ghose’s rules (89) and the Veber criteria (90). According to the 

Lipinski’s rule, orally active drugs should have no more than 5 hydrogen bond donors (HBD), no 

more than 10 (5x2) hydrogen bond acceptors (HBA), a molecular weight (MW) under 500 (5x100) 

g/mol, and an octanol/water partition coefficient (logP) lower than 5. Compounds violating more 

than one of these rules may have difficulties with bioavailability. According to Ghose’s rules, for 

preventing orally active drugs from having low permeation or absorption issues, they must have 

logP values ranging from -0.4 to 5.6, molar refractivity (MR) from 40 to 130, MW from 160 to 

480, and a number of non-hydrogen atoms (XAt) from 20 to 70. On the other hand, according to 

the Veber criteria, chemicals with 10 or fewer rotatable bonds (RB) and a polar surface area (PSA) 

 140 Å2 (or 12 or fewer H-bond donors and acceptors) would have better chances of good oral 

bioavailability. 

     At this point it seems worthwhile to emphasize that all these criteria are empirical and intended 

to be general guidelines, not strict regulations. In fact, viable drugs must also fulfil other important 

requirements, including manufacturability and safety (91). Therefore, these features were also 

investigated here. 

 

2.2. Toxicity 

 

     Two toxicity descriptors were used in this work, namely: 

- LD50: amount of the investigated chemical per body weight (mg/kg) leading to 50% death 

of rats, after oral ingestion. 

- M: usually referred to as Ames mutagenicity. A chemical is positive if it increases (in a 

reproducible, dose-related manner) the number of revertant colonies in one or more strains 

of Salmonella. 

     To calculate both indices, the Toxicity Estimation Software Tool (T.E.S.T.), version 4.1, was 

used. This software makes predictions based on quantitative structure activity relationships 

(QSAR), which are intended for screening untested compounds. The LD50 and M descriptors were 

computed with the consensus method, which makes predictions as the average of the toxicities 

predicted from several QSAR methodologies, considering the applicability domain of each of them 

(92). There is a general agreement that the consensus method usually provides higher accuracy 

and coverage than other methodologies. 

 

2.3. Synthetic accessibility 
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     The synthetic accessibility (SA) of the designed compounds was estimated with the SYLVIA-

XT 1.4 program (Molecular Networks, Erlangen, Germany) (93). It uses several contributing 

criteria, including the similarity to commercially available compounds, the complexity of the 

molecular structure and of ring systems, and the number of stereo centers. These criteria are scaled 

and weighted to provide a value between 1 and 10. The larger the value, the more difficult to 

synthesize is the compound. The SYLVIA program has been validated for ranking virtual 

compounds during drug discovery processes (94). 

 

2.4. Electronic calculations 

 

     In addition to the physicochemical parameters, toxicity and synthetic accessibility, there are 

specific reactivity indices that are expected to indicate antioxidant behavior. To estimate them, 

electronic calculations are necessary. Such calculations were all performed with Gaussian 09 

package of programs (95). Local minima were identified by the absence of imaginary frequencies. 

Unrestricted calculations were used for open shell systems. Geometry optimizations and frequency 

calculations were carried out using the Density Functional Theory (DFT), in particular the M05-

2X functional (96) in conjunction with 6-311+G(d,p) basis set and the solvation model density 

(SMD) (97) using water to mimic a polar environment. M05-2X is a global hybrid exchange-

correlation GGA functional designed for thermochemistry, kinetics and noncovalent interactions 

(96), it has also been recommended for calculating reaction energies involving free radicals (98). 

Furthermore, the M05-2X functional has been widely used for estimating the pKa values, the 

bonding dissociation energies and, in general, the free radical scavenging activity of several 

antioxidant molecules (99-111). SMD is considered a universal solvation model, due to its 

applicability to any charged or uncharged solute in any solvent or liquid medium for which a few 

key descriptors are known (97). In all cases, the absence of imaginary frequencies was identified 

to assure that structures found were local minima.  

 

2.5. Reactivity indices  

 

     Several global reactivity indices were estimated to analyze the chemical behavior of the 

designed melatonin derivatives (Table 1). IE and EA values were calculated in the framework of 

the electron propagator theory (EPT) (112, 113), because this approach usually produces values 

closer to those derived from experiments than other strategies. In particular, the partial third‐order 

quasiparticle theory (P3) (114) was chosen because it has lower mean errors than other methods 

(115).  

Table 1. Reactivity indices, their acronyms, calculation method and interpretation 

 Acronym Calculation* Interpretation 

First (vertical) 

ionization energy 
IE P3, EPT 

Directly related to the capability of 

donating one electron. The lower the IE 

the most likely the antioxidant 

protection, via electron transfer.  

First (vertical) 

electron affinity 
EA P3, EPT Directly related to the capability of 

accepting one electron. The higher the 
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EA the more likely the antioxidant 

protection, by converting O2
•− into 3O2, 

via electron transfer. 

Electrophilicity  
( )

( )

2

8

IE EA

IE EA

+

−
 

In a chemical reaction involving two 

molecules, that with the higher  is 

expected to act as the electrophile, 

while the other will behave as the 

nucleophile (116, 117). 

Electrodonating 

power 
− 

( )

( )

2
3

16

IE EA

IE EA

+

−
 

Measures the capability of a chemical 

system to donate a fractional amount of 

charge. The lower the − the more 

likely the molecule would act as an 

electron donor during weak interactions 

with other species (118, 119).  

Electroaccepting 

power 
+ 

( )

( )

2
3

16

IE EA

IE EA

+

−
 

Measures the capability of a chemical 

system to accept a fractional amount of 

charge. The higher the + the more 

likely the molecule would act as an 

electron acceptor during weak 

interactions with other species (118, 

119).  

Chemical 

potential 
 

2

IE EA+ 
− 
 

 

Electrons will flow from regions of high 

 to regions of low . The number of 

electrons that flow would be 

proportional to differences in , while 

the associated stabilization energy 

would be proportional to its 2. 

Chemical 

hardness 
 

2

IE EA−
 

Measures the resistance to change in 

electron number, or to deformation of 

the electron cloud. It rules the Pearson’s 

hard and soft acids and bases and 

maximum hardness principles (120, 

121). 

Bond dissociation 

energies 
BDE 

( ) ( )

( )

E D E H

E DH

+

−
 

Measures the energy necessary for 

breaking donor(D)-H bonds. The lower 

the BDE, the higher the antioxidant 

activity, via H transfer. 

*The expressions for ,  and  correspond to the commonly used finite difference 

approximation. 

     Since many of other calculated reactivity indices are estimated from IE and EA values, for 

reliability purposes it is important that these two magnitudes are as accurate as possible. However, 
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it is important to keep in mind that for the EPT approximations (including P3) to be valid, the 

values of the pole strength (PS) should be larger than 0.80-0.85 (122, 123). This has been 

confirmed to be the case for all the calculations performed in this work (Table S1). 

     In the BDE case, all sites that are likely to act as H donors were taken into account (Scheme 2). 

They correspond to those already present in the melatonin’s framework (a to d), and also the new 

possibilities arising from incorporating functional groups (-OH, -NH2, -SH and -COOH) in sites 

R1 to R4.  

 
Scheme 2. Sites considered in the BDE calculations 

2.6. Reference set 

     To put into perspective the data obtained for the newly designed melatonin derivatives, a 

reference set of molecules was used. It consists of 35 chemicals already clinically used as 

neuroprotectors. Their names and structures are shown in Table 2, while their properties are 

provided as Supporting Information (Tables S2 and S3). Neuroprotectors were used to construct 

this set because, as previously mentioned, neurodegenerative disorders are among the diseases that 

are attributed (at least partially) to oxidative stress. Thus, efficient antioxidants might also play a 

protective role in this context. However, it should be noted that the ways of action, identified so 

far, for the neuroprotectors in Table 2 do not necessary involves antioxidant protection. 

Table 2. Reference set of molecules, used to compare the estimated properties of melatonin’s 

derivatives  

Compound 

(CAS) 
Structure Ref.* Compound  Ref.* 

Acetylcarnitine 

(3040-38-8) 
 

(124, 

125) 

Masitinib 

(790299-79-5)  

(126, 

127) 

Amantadine 

(768-94-5)  

(128-

130) 

Melatonin 

(73-31-4) 

 

(131, 

132) 

Apomorphine 

(58-00-4) 
 

(133, 

134) 

Memantine 

(19982-08-2)  
(135) 

Baclofen 

(1134-47-0) 

 

(130, 

136, 

137) 

Modafinil 

(68693-11-8) 
 

(138, 

139) 
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Benserazide 

(14919-77-8) 
 

(140, 

141) 

Piribedil 

(3605-01-4) 
 

(129, 

142) 

Benztropine 

(86-13-5) 

 

(143, 

144) 

Pramipexole 

(104632-26-0)  

(129, 

140, 

145) 

Biperiden 

(514-65-8) 

 

(128, 

144, 

146) 

Procyclidine 

(77-37-2) 
 

(144) 

Bromocriptine 

(25614-03-3) 

 

(129, 

147) 

Remacemide 

(128298-28-2) 
 

(148) 

Cabergoline 

(81409-90-7) 

 

(129, 

149, 

150) 

Riluzole 

(1744-22-5)  
(151) 

Carbidopa 

(28860-95-9) 
 

(152, 

153) 

Rivastigmine 

(123441-03-2)  

(142, 

154) 

Curcumin 

(458-37-7) 
 

(155, 

156) 

Ropinirole 

(91374-21-9) 

 

(129, 

140, 

145) 

Dantrolene 

(7261-97-4) 

 

(157-

159) 

Selegiline 

(14611-51-9)  

(128, 

129, 

145, 

147, 

160) 

Donepezil 

(120014-06-4) 

 

(142, 

154, 

161) 

Tacrine 

(321-64-2) 
 

(162, 

163) 

Entacapone 

(130929-57-6) 
 

(140, 

152, 

164, 

165) 

Tetrabenazine 

(58-46-8) 
 

(130, 

166) 

Galantamine 

(357-70-0) 

 

(154, 

167-

169) 

Tizanidine 

(51322-75-9) 
 

(170) 
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Ladostigil 

(209349-27-4) 

 

(171, 

172) 

Tolcapone 

(134308-13-7) 
 

(140) 

L-DOPA 

(59-92-7) 
 

(140, 

141, 

147, 

149, 

152, 

153) 

Trihexyphenid
yl 

(144-11-6) 
 

(130, 

144, 

145) 

Lisuride 

(18016-80-3) 
 

(173, 

174) 
   

*The references correspond to reports of their use as neuroprotectors. 

2.6. pKa calculations 

      Acid constants, expressed as pKa, were calculated for the subset of the most promising 

melatonin derivatives. This is an important feature of molecules intended to be used as the 

medicinal drugs, since drug absorption across the gastrointestinal lining mainly takes place via 

passive diffusion (175). This is ruled by passing across lipid membranes; thus, neutral species are 

more likely to do so than charged ones. The proportion of neutral vs. charged species for molecules 

with acid-base bahaviour is ruled by the pKa-pH relationship. It is evident that for newly designed 

chemicals, pKa values have not been experimentally estimated. Fortunately, theoretical predictions 

can be used instead. Although this is usually a very challenging task, there is at least one approach 

that is easy to use and reliable enough. It is usually referred to as the fitted parameters approach 

(FPA). It involves using experimental pKa values of a set of small reference molecules to obtain 

two parameters (m and C0) from linear fittings:  

exp 0K BAp a m G C=  +   

     In this equation ΔGBA represents the difference in Gibbs energy between the conjugated base 

and the corresponding acid (Gcalc(A−) − Gcalc(HA)). The m and C0 parameters are currently available 

at numerous levels of theory, for phenols, amines, carboxylic acids and thiols (100, 101), i.e., the 

functional groups used here to construct melatonin derivatives. The values of m and C0 at the level 

of calculation used here are shown in Table 3.  

Table 3. Values of the m and C0 parameters, at M05-2X/6-311+G(d,p) level of theory, for 

different functional groups 

Functional group m C0 Ref. 

Phenol 0.316 -81.497 (101) 

Carboxylic acid 0.356 -94.380 (101) 

Amine 0.464 -121.000 (101) 

Thiol 0.357 -94.639 (100) 
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     It has been demonstrated that for all of them, the pKa values calculated with the FPA approach 

deviate from experiments by less 0.5 pKa units, in terms of mean unsigned errors. Therefore, that 

is the approach used in this work to estimate the pKa values of the designed melatonin derivatives.  

 

3. RESULTS 

 

     Computer-based design of drug-like molecules is a challenging task. There are at least three 

important issues that should be properly addressed: (i) building the candidate species; (ii) sampling 

the search space in an efficient way; and (iii) evaluating their potential for the intended purpose 

(176). The detailed criteria on each of them are provided next. 

 

3.1. Building melatonin derivatives 

 

     The melatonin derivatives designed here were conceived to promote multifunctional 

antioxidant activity. Antioxidants can be classified as primary (Type I, or chain breaking), 

secondary (Type II, or preventive) and tertiary antioxidants (Type III, or repairing) (177, 178). 

Type I are molecules that directly react with free radicals, thus they are usually referred to as free 

radical scavengers. Type II de-active free radicals otherwise, for example acting as •OH-

inactivating ligand (OIL) (179, 180) through metal chelation. Type III restore oxidative damaged 

biomolecules to their original structure (mainly through H or electron transfer). Multifunctional 

antioxidants are molecules that exhibit more than one of these types of protection. 

     To take advantage of the desirable features of melatonin as much as possible, the new molecules 

were built by moderate structural modifications. To that purpose four functional groups (i.e., -OH, 

-NH2, -SH and -COOH) were used. They were chosen considering that, because of their chemical 

nature, they are expected to play, at least, one of the following roles: 

− They can influence the acid-base behavior, thus modulating the proportion of neutral 

species at specific pH values, which is important for drugs passing across lipid barriers via 

passive diffusion (175).  

− They may contribute to increase free radical scavenging activity (i.e., antioxidant activity, 

types I and III) via H donation, or electron donation. 

− They may contribute to increase metal chelating capability (i.e., antioxidant activity type 

II, OIL behavior). 

     Although the thiol group might be considered as an unwanted functionality in drug discovery 

because of its high reactivity (181), it has been included in this investigation. The reason is just 

that reactivity, since the compounds designed in this work mainly act as chemical (antioxidant) 

agents. In addition, the thiol functionality is expected to increase metal chelating abilities and has 

been identified as crucial for the free radical scavenging activity of widely recognized antioxidants 

such as glutathione.(182, 183) 

     Placing the above-mentioned functional groups in all the available positions of the indole ring 

(R1 to R4, Scheme 2), 116 melatonin derivatives were constructed (Table S4, Supporting 

Information). Sixteen of them with only one functional group (all possible species within the used 

substitution scheme), 96 of them with two functional groups (using any possible combination) and 

4 with three functional groups. The latter were built from the most promising bi-functionalized 

species (details on this are provided in the next section). Melatonin itself was included in the set 

of molecules for comparison purposes. 
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3.2. Sampling the search space, using extended ADME properties 

 

     As previously mentioned, in addition to ADME (absorption, distribution, metabolism, 

excretion) properties, toxicity (T) and manufacturability (i.e., synthetic accessibility, SA) are also 

important features for viable medicinal drugs. Therefore, a selection score (SS) including all these 

aspects has been constructed. It was used to characterize the whole set of designed melatonin 

derivatives (116 species) and choosing a reduced subset of 20 molecules that are expected to be 

the most promising, regarding drug-like behavior.  

     The selection score was constructed in such a way that the higher the value of SS the more likely 

that a melatonin derivative (dM) has a drug-like behavior: 

 
S ADME T SAS S S S= + +   

where  

8

D A M XlogP HB HB MW R A RB PSA
ADME S S S S S S S S

S
+ + + + + + +

=  

50

2

LD M
T S S

S
+

=  

with 

1, if - 0.4 5.0

0, otherwise

logP
logP

S
 

= 


 

1, if 5

0, otherwise

D
D

HB HB
S

 
= 


 

1, if 10

0, otherwise

A
A

HB HB
S

 
= 


 

1, if 160 480

0, otherwise

MW
MW

S
 

= 


 

1, if 40 130

0, otherwise

M
M

R R
S

  
= 


 

1, if 70

0, otherwise

X
X

A A
S

 
= 


 

1, if 10

0, otherwise

RB
RB

S


= 


 

1, if 140

0, otherwise

PSA
PSA

S


= 

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 50 50

50

1 log
dM

LD

RefSet

LD
S

LD

 
= +  

 
  

 1 log
RefSet

M

dM

M
S

M

 
= +  

 
  

 1 log
RefSet

SA

dM

SA
S

SA

 
= +  

 
  

     In the particular case of S
XA, only the upper limit of the Ghose’s rules was used because many 

of the currently used drugs have S
XA < 20. For the reference set used here 16 out of 35, i.e., 45%, 

including the parent molecule (melatonin). They are acetylcarnitine (S
XA=14), amantadine 

(S
XA=11), baclofen (S

XA=14), benserazide (S
XA=18), carbidopa (S

XA=16), L-DOPA (S
XA=14), 

melatonin (S
XA=17), memantine (S

XA=13), modafinil (S
XA=19), pramipexole (S

XA=14), riluzole 

(S
XA=15), rivastigmine (S

XA=18), ropinirole (S
XA=19), selegiline (S

XA=14), tacrine (S
XA=15) and 

tizanidine (S
XA=16). 

     The results for SS are shown in Fig. 1, and the values of the individual properties used to 

calculate SS are reported in Table S5 (Supporting Information). In general, in this figure the 

molecules with higher SS values are expected to have lower toxicity, better synthetic accessibility, 

and better ADME properties. Based on this criterion, 20 melatonin derivatives (Scheme 3) were 

selected for the next stage of the investigation, i.e., to evaluate their potential as antioxidants based 

on reactivity indices.  

 
 

Figure 1. Selection score (SS) for the melatonin derivatives designed in this work. Vertical 

lines mark the arithmetic mean of the reference set (red) and the value for the parent 

molecule (melatonin, green).  
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Scheme 3. Structure and SS values of melatonin and the derivatives selected for the next stage 

of the investigation. The molecules printed in blue are the most likely candidates to act as 

chemical antioxidants (See section 4.2). 

 

     However, the selection score is rather general and might mask a particular case with high SS 

but a failure for a particular property. Therefore, in addition to SS, exclusion scores (SE) were also 

used, inspired by previous proposals (184, 185), to double-check if any molecule in the selected 

subset significantly deviates (in any of its properties) from the average value of the reference set 

(described in section 2.6). Four exclusion scores were used for that purpose. The first one, here 

referred to as SE,ADME2 is identical to that previously proposed (184, 185): 

 

 
, 2

log

log log dM dMRefSet RefSetE ADME

P MW

P P MW MW
S

SD SD

− −
= +   

     The second one, SE,ADME8, uses the same kind of analysis but including 8 terms, one per each 

ADME property evaluated here: 



Melatonin Research (Melatonin Res.)                           http://www.melatonin-research.net 
 

Melatonin Res. 2018, Vol 1 (1) 27-58; doi: 10.32794/mr11250003                                     39  
 

, 8 , 2

X A

D M

X X A A

dM dM dMRefSet RefSet RefSetE ADME E ADME

PSA A HB

D D M M

dM dM dMRefSet RefSet RefSet

RBHB R

PSA PSA A A HB HB
S S

SD SD SD

HB HB RB RB R R

SD SD SD

− − −
= + + +

− − −
+ + +

 

     The third one, SE,ADMET, includes two other terms, related to toxicity; and the fourth 

(SE,ADMETSA) also includes a term for synthetic accessibility: 
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−
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     These exclusion scores (Fig. 2 and Table S6) measure deviations from the average values of 

already used oral drugs. SE,ADME2 values have been reported to be 1.5 and 1.2, when considering 

152 and 1791 oral drugs, respectively (184, 185). For the reference set used here (35 molecules), 

average SE,ADME2 = 1.3, with individual values ranging from 0.15 to 4.49. On the other hand, for 

the 20 melatonin derivatives with highest selection scores, average SE,ADME2 = 0.7 with individual 

values ranging from 0.4 to 1.1 (Table S6, Supporting Information). Therefore, according to 

SE,ADME2 they seem to be suitable as drug-like molecules. 

     The SE,ADME2 score, however, only accounts for 2 of the analyzed properties and has rather 

similar values for all the analyzed molecules (Fig. 2). That is the reason the other 3 elimination 

scores were also implemented. They account for more properties and span the scales. Average 

SE,ADME8 = 4.1, with individual values ranging from 1.4 to 7.2; SE,ADMET = 6.5, with individual 

values ranging from 2.7 to 14.7; and SE,ADMETSA = 6.8, with individual values ranging from 3.1 to 

14.8. It is important to consider, though, that high values of these scores may arise from either 

worse or better behavior (as oral drug-like species) than the average of the reference drugs. 

 

 
Figure 2. Elimination score (SE) for the most promising melatonin derivatives, according to 

SS. Columns are divided to show the influence of the new contributions included in each 

score, with respect to the previous one. 
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3.3. Evaluating antioxidant likeliness, using reactivity indices 

 

     Reactivity indices were estimated for the subset of molecules chosen in the previous section. 

Since their involvement in acid-base equilibria may be relevant to the target behavior, their pKa 

values were estimated (Table 4) and the associated deprotonation routes elucidated (Figure S1, 

Supporting Information). The corresponding distribution diagrams are also provided as Supporting 

Information (Figure S2), while the molar fractions (Mf) of the different acid-base species, at 

physiological pH, are reported in Table 4. The reactivity indices for the acid-base species with 

non-negligible population (Mf > 0.1%), at pH=7.4, are reported in Table 5. 

 

Table 4. Estimated pKa values and molar fractions of the protonated (Mfprot), neutral 

(Mfneutral), anionic (Mfanion) dianionic (Mfdian) and trianionic (Mftrian) species of melatonin and 

its derivatives, at pH=7.4 

 

 pKa1 pKa2
 pKa3

 Mfprot
 Mfneutral 

Mfanion 
Mfdian

 Mftrian
 

dM-3 10.25 - - - 0.999 0.001 - - 

dM-6 7.28 - - - 0.431 0.569 - - 

dM-7 7.98 - - - 0.792 0.208 - - 

dM-8 5.46 - - - 0.011 0.989 - - 

dM-10 6.16 - - 0.054 0.946 - - - 

dM-11 5.20 - - 0.006 0.994 - - - 

dM-34 5.87 11.47 - - 0.029 0.971 <10-4 - 

dM-38 5.90 12.12 - - 0.031 0.969 <10-4 - 

dM-61 5.65 13.41 - - 0.017 0.983 <10-6 - 

dM-64 3.27 8.46 - - <10-4 0.920 0.080 - 

dM-72 0.92 5.03 - <10-8 0.004 0.996 - - 

dM-81 6.59 10.05 - 0.134 0.864 0.002 - - 

dM-92 3.43 4.34 - - <10-7 0.001 0.999 - 

dM-94 4.03 7.60 - - <10-3 0.613 0.387 - 

dM-96 3.35 4.31 - - <10-7 <10-3 0.999 - 

dM-100 3.27 4.01 - - <10-7 <10-3 ≈1.000 - 

dM-104 3.95 4.65 - - <10-6 0.002 0.998 - 

dM-112 3.02 4.39 - - <10-7 <10-3 0.999 - 

dM-114 4.89 11.16   0.003 0.997 <10-3 - 

dM-115 6.14 10.46 13.41 - 0.052 0.947 0.001 <10-9 
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Table 5. First ionization energy (IE, eV) and electron affinities (EA, eV), electrophilicity (), 

electrodonating (−), electroaccepting (+) powers, chemical potential (μ, eV), chemical 

hardness (η, eV), and bond dissociation energies (BDE, kcal/mol) for melatonin and the 

selected subset of derivatives  

 IE EA  − + μ η BDE 

Protonated         

dM-10 11.17 2.09 2.42 8.72 2.09 -6.63 9.08 90.48 

dM-11 10.89 2.91 2.98 9.91 3.01 -6.90 7.98 89.45 

dM-81 10.84 2.05 2.36 8.49 2.05 -6.44 8.79 80.62 

Neutral         

Melatonin 7.49 -0.97 0.63 3.41 0.15 -3.26 8.46 89.33 

dM-3 7.19 -0.97 0.59 3.25 0.14 -3.11 8.16 77.76 

dM-6 7.09 -0.81 0.62 3.31 0.17 -3.14 7.90 74.33 

dM-7 7.11 -0.91 0.60 3.25 0.15 -3.10 8.02 73.24 

dM-8 7.23 -0.92 0.61 3.31 0.15 -3.16 8.15 73.46 

dM-10 6.44 -0.98 0.50 2.83 0.10 -2.73 7.42 86.75 

dM-11 6.81 -1.02 0.53 3.01 0.11 -2.89 7.83 88.18 

dM-34 6.92 -0.94 0.57 3.13 0.13 -2.99 7.85 66.68 

dM-38 7.17 -0.93 0.60 3.26 0.15 -3.12 8.10 71.51 

dM-61 7.26 -0.93 0.61 3.32 0.15 -3.16 8.18 69.14 

dM-72 7.12 0.54 1.12 4.56 0.73 -3.83 6.58 89.15 

dM-81 6.26 -1.02 0.47 2.71 0.09 -2.62 7.28 63.65 

dM-114 6.91 -0.77 0.61 3.24 0.17 -3.07 7.68 68.32 

dM-115 7.06 -0.75 0.64 3.34 0.19 -3.16 7.81 67.54 

Anionic         

dM-3 2.17 -3.18 0.02 0.13 0.63 0.50 5.35 87.37 

dM-6 1.98 -3.19 0.04 0.09 0.70 0.61 5.17 84.91 

dM-7 1.72 -2.68 0.03 0.09 0.57 0.48 4.40 87.48 

dM-8 2.12 -2.73 0.01 0.17 0.47 0.30 4.85 88.56 

dM-34 1.98 -2.90 0.02 0.12 0.58 0.46 4.88 61.88 

dM-38 1.95 -2.70 0.02 0.13 0.51 0.38 4.65 68.31 

dM-61 1.99 -2.68 0.01 0.14 0.49 0.35 4.67 70.75 

dM-64 3.88 -2.56 0.03 0.80 0.14 -0.66 6.44 78.19 

dM-72 3.65 -2.46 0.03 0.74 0.14 -0.60 6.11 88.21 

dM-81 1.61 -2.90 0.05 0.05 0.70 0.65 4.51 87.86 
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dM-92 4.51 -3.13 0.03 0.89 0.19 -0.69 7.64 93.98 

dM-94 4.23 -3.11 0.02 0.78 0.22 -0.56 7.35 73.87 

dM-104 4.46 -2.30 0.09 1.14 0.06 -1.08 6.77 90.17 

dM-114 2.08 -2.53 0.01 0.19 0.41 0.22 4.61 69.83 

dM-115 1.72 -2.53 0.02 0.10 0.50 0.40 4.25 63.09 

Di-anionic         

dM-64 -1.46 -4.11 1.47 1.70 4.49 2.79 2.65 88.35 

dM-92 0.96 -5.26 0.37 0.06 2.21 2.15 6.22 88.16 

dM-94 -0.54 -4.58 0.81 0.59 3.15 2.56 4.04 87.70 

dM-96 1.33 -4.49 0.21 0.003 1.58 1.58 5.82 88.83 

dM-100 1.33 -4.50 0.21 0.003 1.59 1.58 5.84 88.81 

dM-104 1.03 -4.68 0.29 0.03 1.86 1.83 5.71 85.91 

dM-112 0.64 -4.03 0.31 0.06 1.76 1.70 4.66 89.13 

dM-115 -1.99 -4.69 2.07 2.63 5.98 3.34 2.70 59.50 

 

4. DISCUSSION 

4.1. Elimination scores 

     Some discussions on the different contributions to the elimination scores seem worthwhile. 

Figure 2 clearly shows that synthetic accessibility and the two properties included in SE,ADME2 

(logP and MW) both have rather small (and similar contributions) to the deviations from the 

reference molecules. On the contrary, the new properties included in SE,ADME8 and the toxicity 

indices have the largest contribution to SE,ADMETSA.  

     To analyze the individual contributions of the different properties to the SE,ADMETSA elimination 

score, a more detailed plot was constructed (Fig. 3). It was found that the largest deviations from 

the average value of the reference set of molecules arise from LD50, M, PSA, HBD and HBA. 

Regarding LD50, the derivatives deviating the most from the average (dM-104, dM-96, dM-72, 

dm-112, dM-96 and dM-100) are less toxic to rats than the reference average (LD50 = 960.8), with 

values 6960.5, 4733.5, 2892.9, 2861.8, 2399.7 and 2303.2, respectively. Thus, these large 

deviations mean a more desirable behavior than that of the references and, consequently, these 

derivatives were not excluded from the subset selected as the most promising, based on 

ADMETSA properties.  

      A similar trend was found for the Ames mutagenicity, i.e., the compounds predicted as the 

least mutagenic are just those that deviate the most from the reference set (M = 0.41). They are 

dM-6, dM-7, dM-8, dM-64, dM-38 and dM-61, all with M  0.02. Thus, it is important not just to 

identify the designed compounds with the largest deviation from the reference set, but also what 

causes such deviations. Otherwise, good candidates might be eliminated for the wrong reasons.  
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Figure 3. Individual contributions to the elimination score (SE), for the most promising 

melatonin derivatives. 

 

     On the contrary, for the other indices (PSA, HBD and HBA) larger SE values actually mean that 

the behavior of the investigated derivatives approaches the upper limits of the recommended range 

for the investigated parameters, although they still fulfil Lipinski’s and Ghose’s rules, as well as 

the Veber criteria. Regarding PSA the selected derivatives deviating the most from the reference 

set are dM-92, dM-96, dM-100, dM-104, dM-112 and dM-72. Their PSA values range from 128.7 

to 117.5 (i.e., below the Veber’s threshold, 140 Å2). The largest deviations for HBD correspond to 

dM-72, dM-81, dM-10, dM-11, dM-92 and dM-96, with HBD = 5 or 4; and for HBA correspond to 

dM-92, dM-96, dM-100, dM-104, dM-112 and dM-72, with HBD = 8 or 7. Thus, they do not 

constitute violations of the Lipinski’s rule. 

     Based on what has been discussed in this section, none of the 20 melatonin derivatives 

identified as the most likely candidates, based on the selection score, was eliminated after further 

screening using the elimination scores. Accordingly, reactivity indices were estimated and 

analyzed for all of them. 

 

4.2. Antioxidant-like behavior 

 

     The reactivity indices estimated in this work are expected to help predicting antioxidant 

behavior, via free radical scavenging activity, provided that such activity involves single electron 

transfer (SET) and/or formal hydrogen atom transfer (HAT) mechanisms. There is graphical tool, 

known as the full electron donator acceptor map (FEDAM) (186, 187) that allows predicting, 

quickly and qualitatively, the direction of the electron flow in SET reactions (Fig. 4). It is based 

on the precept, that in SET reactions between two chemical species, that with the lower IE would 

be the electron donor, and that with the higher IE would be the electron acceptor. 
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Figure 4. Schematic representation of the Full Electron Donor-Acceptor Map (FEDAM) 

 

     Thus, the FEDAM tool was used for the subset of melatonin derivatives selected in section 3.2 

(Fig 5). Some reactive oxygen species (ROS) were also included in the map to facilitate the 

analyses, as well as the parent molecule for comparison purposes. The different acid-base species 

of the newly designed derivatives were explicitly included in Fig 5, since deprotonation is expected 

to play an important role on SET feasibility. In fact, this is clearly shown in the figure, where the 

acid-base species are located in a cluster-like way depending on their charge. According to this 

map, all of them except the protonated ones, are expected to donate one electron to ROS. Thus, 

the designed melatonin derivatives are predicted to behave as ROS scavengers, at least via SET. It 

is also interesting to note that some of them are also expected to be slightly more efficient for that 

purpose than melatonin itself. The trend obtained from the FEDAM is in line with that of the 

chemical potential (μ, Table 5). This is a logical result, since electrons are expected to flow from 

regions of high  to regions of low . Moreover  has a linear dependence with IE (Figure S3, 

Supporting Information).  

 
Figure 5. FEDAM (Full Electron Donor Acceptor Map) for melatonin derivatives 

 

     On the contrary, electrophilicity () and electrodonating power (−) do not have linear 

dependences with IE (Figure S4, Supporting Information). In fact, for species with very low IE, 

the  and − values increase. This behavior resembles to some extent that of the inverted region 
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of the Marcus parabola, which indicates that for Gibbs (ΔG) energy of reaction much lower than 

minus the reorganization energy, reaction barriers increase as ΔG becomes more negative (188-

190). Albeit this is a counterintuitive behavior, it suggests that species with very low IE are not 

expected to be very efficient as free radical scavengers acting as electron donors in SET reactions. 

That would be the case for the dianionic species of the investigated melatonin derivatives. 

However, such a behavior would need further confirmation. 

     The acid-base species that, based on  values, seem to be the most promising for deactivating 

free radicals via SET, acting as electron donors, are the mono-anions (Figure 6). They have the 

lowest values of  for each derivative; and as previously mentioned, in a chemical reaction 

involving two reactants that with the lower  is expected to act as the nucleophile (116, 117). The 

mono-anionic species analyzed in Figure 5, all have lower  values than any of the investigated 

free radicals, thus they are expected to be efficient for scavenging free radicals via electron 

transfer. In addition, all the mono-anions of the subset of melatonin derivatives with better drug-

like behavior have similar electrophilicity. Thus, they are probably similarly efficient as free 

radical scavengers via SET. To tell them apart another criterion is necessary. 

 
Figure 6. Electrophilicity of the acid-base species of melatonin derivatives. 

 

     Another graphical tool has been designed, simultaneously accounting for likeliness as electron 

donors (SET reactions) and H donors (formal HAT reactions). Here it is referred to as the electron 

and hydrogen donating ability map for antioxidants (eH-DAMA), and simultaneously includes 

electrodonating power (−, accounting for SET feasibility) and bond dissociation energies (BDE, 

accounting for HAT feasibility). The BDE values for each species are provided as Supporting 

Information (Table S7). Figure 7 shows this map for melatonin derivatives, it also includes the 

parent molecule and trolox for comparison purposes and the H2O2/O2
•− pair as the potential oxidant 

target. The later has been chosen because it is usually harder to scavenge than other reactive 

oxygen species, and because it has been previously found that melatonin itself is not very efficient 

for chemically deactivating this radical.(191) 

     The chemical species with lower − are expected to be particularly efficient for scavenging free 

radicals acting as electron donors via SET, while the species with lower BDE are expected to be 

particularly efficient for scavenging free radicals acting as H donors via formal HAT. Therefore, 

the species located at the bottom and left side of the eH-DAMA are likely to act both ways, i.e., 

they are particularly interesting as antioxidants. This region has been highlighted in Figure 6, and 

shows that the species fulfilling both criteria are all mono-anions, including that of trolox.  



Melatonin Research (Melatonin Res.)                           http://www.melatonin-research.net 
 

Melatonin Res. 2018, Vol 1 (1) 27-58; doi: 10.32794/mr11250003                                     46  
 

 

 
Figure 7. The electron and hydrogen donating ability map for antioxidants (eH-DAMA), 

including the acid-base species of melatonin derivatives, the parent molecule, trolox and the 

oxidant the H2O2/O2
•− pair 

 

     All the species in the target region are predicted to have similar electron-donor capability, but 

rather different H-donating power. Based on the data summarized in Fig. 7, derivatives dM-34, 

dM-115, dM-38, dM-114, dM-61 and dM-94 are predicted to be better hydroperoxyl scavengers 

than trolox, and also than the parent molecule. On the other hand, dM-64 should be better than 

melatonin for that purpose, but its antioxidant activity is not expected to surpass that of trolox. 

Since their most active species are expected to be the mono-anions, their molecular fractions are 

relevant in this context. For all these derivatives, mono-anions are the most abundant acid-base 

species at physiological pH (Table 4). However, to cross biological barriers it is also important 

that the molar fractions of the neutral species are not negligible. Most of above mentioned 

derivatives also fulfill this requirement. The only exception is dM-114. Therefore, the melatonin 

derivatives proposed as the most promising antioxidants are dM-34, dM-115, dM-38, dM-61 and 

dM-94 (in that order). Further, more detailed and quantitative, investigations on their antioxidant 

action are still needed and highly desirable, to confirm or refute the proposal from this work. 

 

4.3. Other considerations 

 

     At this point it seems worthwhile to make some comments regarding the limitations of the 

present study, and the necessity of further investigations on the topic of this investigation using 

both theoretical and experimental approaches. Antioxidant protection is a complex process that 

involves different chemical and non-chemical routes, thus there are several aspects on the behavior 

of the designed compounds, in biological systems that need to be further explored. Some of them 

are: 
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1. Quantitative estimations of the kinetics involved in the free radical scavenging activity of 

the designed compounds.  

2. Identification of the primary products yielded from their reactions with free radicals. 

3. Investigations on the possible capability of the designed compounds to chelate redox 

metals and act as OH inactivated ligands. 

4. The possibility of pro-oxidant effects. 

5. Antioxidant protection arising from melatonergic signaling, including the evaluation of the 

designed compounds as ligands to melatonin receptors. 

6. Enzymatic metabolism of the designed compounds, and characterization of the 

corresponding metabolites. 

7. Experimental assessments of toxicity of both the proposed compounds and their 

metabolites. 

8. The possibility that the melatonin derivatives identified here as the most promising 

antioxidants may undergo transnitrosation reactions, since they all contain a sulfhydryl 

group. 

     As it is evident from these points, it is unfeasible to carry out all the necessary research on the 

designed compounds in a single investigation. Hopefully, the results from this work are promising 

enough to motivate further researches on these compounds, and help obtained a more complete 

picture regarding their possible use as antioxidant agents. 

 

5. CONCLUSIONS 

 

     A systematic rational search for newly designed melatonin derivatives, performed using a 

computer-assisted protocol, is presented. A total of 116 derivatives were generated by adding 

functional groups (i.e., -OH, -NH2, -SH and -COOH) to the melatonin structure; 16 with only one 

functional group (all possible species within the used substitution scheme), 96 with two functional 

groups (using any possible combination) and 4 with three functional groups. 

     A selection score (SS) was built to sample the search space, simultaneously considering ADME 

(absorption, distribution, metabolism, excretion) properties, toxicity and manufacturability (i.e., 

synthetic accessibility). It was used to characterize the whole set of designed melatonin derivatives 

and allowed the selection of a reduced subset of 20 melatonin derivatives that are expected to be 

the most promising, regarding drug-like behavior. 

     For this subset, several reactivity indices were estimated, as well as their pKa values. These 

indices account for electron and H donor capabilities; thus, they are expected to reflect free radical 

scavenging behavior through single electron transfer (SET) and formal hydrogen transfer (HAT) 

mechanisms. According to the gathered data, 5 melatonin derivatives have been identified as the 

most likely candidates to act as chemical antioxidant (by directly scavenging free radicals). They 

are dM-34, dM-115, dM-38, dM-61 and dM-94 (Scheme 3), in that order. All of them are predicted 

to be better for that purpose than melatonin itself and trolox. The findings from this work are 

expected to motivate further investigations on these molecules, using both theoretical and 

experimental approaches. 
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