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ABSTRACT 

 

     The enteroendocrine cells in gastrointestinal (GI) tract synthesize more than thirty 

hormones in mammals. Among these cells, the enterochromaffin (EC) cells are probably the 

most important one due to the fact that they produce melatonin. The rate-limiting enzymes 

for melatonin synthesis including arylalkylamine-N-acetyltransferase (AANAT, currently the 

SNAT) and hydroxyindole-O-methyltransferase (HIOMT, currently the ASMT) have been 

identified in EC cells and this has confirmed the local melatonin production in GI tract by 

these cells. EC cells play a critical role in regulation of gastrointestinal physiology, 

particularly, in protection of the GI tract from free radical attack and inflammatory reaction. 

GI tract is the major site exposed to the oxidative stress and inflammation because of the food 

residue metabolism and the presence of trillions of microbes including the pathological 

bacteria. Thus, it requires strong protection. Melatonin synthesized by the EC cells provides 

the onsite protection in GI tract since this molecule is the potent free radical scavenger and 

effective ant-inflammatory agent. In this review we summarize the available information 

regarding the structural and functional variability of the EC cells as well as their 

pathophysiological roles in the GI tract. The focus is given to the protective effects of 

melatonin produced by the EC cells on the oxidative stress, inflammation and microbiota 

balance in GI tract. 

Keywords: Gastrointestinal (GI) tract, enterochromaffin (EC) cells, oxidative stress, 

melatonin, inflammation, enteric microbiota. 

___________________________________________________________________________ 

 

1. INTRODUCTION 

 

     Enterochromaffin (EC) cells are the most abundant enteroendocrine cells in 

gastrointestinal (GI) tract and they synthesize more than thirty hormones, hence they are 

referred as ‘the largest endocrine organ in the body’ of mammals (1). Melatonin is one of 
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these secretory products. Originally, serotonin was believed to be the prime hormone secreted 

by EC cells (2) However, further studies by use of immunohistochemical assay have 

identified that melatonin is the primary product of EC cells. Identification of melatonin 

synthetic system is the hallmark event in EC cell research (3-6). This observation raises a 

question as to what is the contribution of the GI melatonin on the circadian rhythm since the 

amounts of melatonin generated in the GI tract surpasses pineal melatonin by 10-100 folds 

(7-12). It was speculated that majority of circulatory melatonin during the day was derived 

from the GI tract since pinealectomy does not alter the daytime serum melatonin level (13-

14). In addition, even though pinealectomy caused a decrease in night time circulatory 

melatonin level but it was unable to alter the melatonin concentration in the GI tract (10). 

Administration of L-tryptophan (Trp), the precursor of melatonin synthesis, in 

pinealectomized rats enhanced the circulatory melatonin level (15-16). The evidence 

mentioned above strongly supports melatonin synthesis in GI tract. A final proving of GI 

melatonin synthesis came from the identification of its rate-limiting enzyme, arylalkylamine-

N-acetyltransferase (AANAT or SNAT), (12, 17-20) and hydroxyindole-O-methyltransferase 

(HIOMT or ASMT) (21) in GI tract, particularly in the EC cells of the digestive mucosa. 

Considering the large surface area of the GI tract and the relatively high concentrations of 

melatonin per gram of GI tissue it was calculated that the amounts of melatonin generated in 

GI tract of mammals would exceed the amounts of melatonin generated in pineal gland by 

roughly 400 times (22). This number may vary among the different species (23). Currently, 

the regulatory mechanisms on melatonin synthesis in GI tract have not been fully elucidated, 

but feeding regimen (meal frequency and timing of meals) seems to be the key environmental 

cue to synchronize the daily levels of GI melatonin in mammals (24-27). 

     Melatonin released from the EC cells seemed to act on a paracrine manner (12, 28-30) 

since the submucosa and muscularis tissue layer of the gastrointestinal wall possessed 

relatively low melatonin binding sites (28, 31-32). The GI melatonin can be transported into 

lamina propria and submucosa via blood vessels and then acts on the muscularis, where a 

substantial amount of melatonin was found (33). Physiologically, melatonin can either 

directly act on the intestinal muscles (6) or, produces its activities via myenteric nervous 

system (34). The presence of melatonin receptors and/or binding sites in the GI tissues 

supported the conjecture mentioned above (31, 34-36). All these clearly indicate the 

pleiotropic roles of melatonin played in the GI tract (20, 37-38). For example, as a signal 

molecule of photoperiodic clue melatonin has significant effect on the digestive physiology in 

mammals (12, 37). The constant light and constant darkness affected the activity of the 

digestive enzymes probably mediated by alterations in the levels of melatonin (39). Thus, the 

present review will summarize the functional relationships among EC cells, its melatonin 

production and the effects of melatonin on GI heath in mammals. 

 

2.  EC CELLS 

 

     The gastrointestinal mucosa is comprised of numerous types of endocrine cells with 

distinct appearances, localizations and functional characteristics. EC cells (or Type I cells) 

are one of the five enteroendocrine cell types (40). EC cell is designated its name by its 

occurrence in the intestinal epithelium and its ability to bind with chromium salts. It was first 

identified in the stomach of dog and rabbit (41) and then in many species. Erspamer classified 

EC cell as a collection of cells containing chromaffin and argentaffin granules that can bind 

with diazonium salts and exhibit fluorescence under Wood’s light.  EC cells are found in the 

GI tract of different vertebrate and non-vertebrate species including Amphioxus, Ascidia, 

Octopoda, Muricidae and Amphibia (42).  
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2.1. Structural features of EC cells. 

 

     Up to 1969, there are different opinions as to the classification and categorization of 

endocrine cells in the gut. The opinion of only single type of endocrine cell in gut was 

rejected following the identification of different endocrine cells in the digestive tract of rats 

(40). Morphologically, epithelium of the GI mucosa has, at least, five different types of 

endocrine cells and the EC cell is one of them (40). However, EC cells are the major type of 

endocrine cells and they are structurally characterized by the presence of tapering end with 

numerous microvilli similar to intestinal columnar epithelial cells (40). The junctional 

proteins, including zonula adherens, zonula occludens and macula adherens, connect the 

apical region of the EC cells to the adjacent epithelial cells (40, 43). The rough endoplasmic 

reticulum is around the nuclei, whereas mitochondria are in the perinuclear as well as in the 

basal region of cytoplasm. Golgi apparatus occupy the cytoplasm of the apical zone, while 

the secretory granules are distributed in the wide basal end. Secretory granules are membrane 

bound molecules with slender, spherical, oval or bean shaped appearances (40, 43). These 

granules contain uniform opaque substance which can be stained with simple and fluorescent 

dyes or has ninhydrin vapour and alkallinethionidoxyl reactions. The presence of 5-

hydroxytrypatamine (serotonin, 5-HT) in these granules was confirmed by auto-radiographic 

assay. In fact, about 95% of serotonin in the body are produced by EC cells (44-48). Motilin 

(49), substance P (50), and enkephalin (51) were also identified in the secretory granules. The 

lamina propria beneath the basement membrane has rich supply of fenestrated blood 

capillaries and lymphatic vessels. EC cells have the capacity to make direct anatomical 

connections with afferent and efferent nerve fibres involving both extrinsic neural pathways 

and the enteric nervous system of the GI tract (43). 

 

2.2. Functional variability of the EC cells. 

 

     EC cells play pivotal roles in gastric secretion and motility and both are mainly mediated 

by serotonin and melatonin released from EC cells. Activations of specific EC cell receptors 

and signalling pathways orchestrate a variety of functions including propulsion, mixing and 

digestion of food, host-microbial signalling and modulating the gut immunity (52-54). A 

variety of membrane receptors of EC cells have been identified and these include 5HT 

receptors, cholinergic receptors, γ-amino butyric acid receptors, adrenoceptors (both α and β), 

corticotrophin releasing hormone receptors, irritant receptors (transient receptor potential A1) 

and pituitary adenylate cyclase-activating polypeptide receptors (55-57). Additionally, it has 

been observed that serotonin release is stimulated by addition of odorants and tastants to the 

EC cell cultures indicating the presence of olfactory and gustatory receptors too on the EC 

cells (58). 

 

2.2.1. Role of EC cells in modulating gut motility in response to chemical and 

mechanical stimuli. 

 

     Mechanical and chemical stimulations of the gut luminal wall increase serotonin secretion 

and this reaction is, at least partially, mediated by neural reflexes (54, 57). The afferent vagal 

nerve does not make direct contact with the luminal contents of the gut. Instead, many 

bioactive substances in the intestinal lumen activate the EC cells to release serotonin as 

response to the chemical stimulation. These stimuli include glucose, oxygen, short-chain fatty 

acids, amino acids, peptides, purines, change in osmolarity and pH, certain drugs and even 

the products released by the enteric microbiota (57, 59-62). Besides, the mechanical forces 

generated during mixing and propulsion of food, defecation, increased stretch or, distension 
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also lead to the release of serotonin from EC cells (54). Serotonin binds to 5HT3R receptors 

at the nerve endings of vagal sensory neurons, thereby activating the vagal afferents (52). 

Serotonin binding to 5HT4 receptors at the nerve terminals of the intrinsic afferents has also 

been observed. The stimulation of the enteric nervous system triggers excitation of the 

cholinergic neurons that makes efferent connections with the GI smooth muscles, finally 

leading to the smooth muscle contraction (63-64). Serotonin released from the EC cells also 

directly communicates with the serotonin receptors on smooth muscle cells of the GI tract to 

induce relaxation of the smooth muscles (65). Hence, serotonin released from EC cells is 

responsible for both contraction and relaxation of intestinal smooth muscle depending on the 

action positions. This makes the alternative intestinal segments to form peristaltic wave 

pattern (1). 

     EC cells are electrically excitable due to the presence of voltage-gated sodium and 

calcium channels in their membrane. This has been confirmed with the whole cell patch 

clamp study in transgenic mice. This feature seems to be partially responsible for signal 

transduction in EC cells (57). Mechanical stimulation also leads to intestinal mechano-

sensory transduction. This is mediated by the activation of Piezo-2 mechano-gated channel in 

EC cells and the adjacent epithelial cells to cause purine release. The elevated purine level 

further triggers the release of serotonin from EC cells to perform its autocrine and paracrine 

functions, respectively. The purines, including ATP and UTP, activate IP3-DAG signalling 

pathway and consequently promote the release of calcium from endoplasmic reticulum. The 

calcium levels are responsible for peristalsis, mixing and propulsion of gastrointestinal 

contents (54, 66).  

 

2.2.2. EC cell as the gut immunomodulator. 

 

     The role of EC cells in modulating immune functions has been well documented (67). A 

variety of toll-like receptors have been identified in mouse derived EC cell line (STC-1). The 

toll-like receptors can detect different microbial components and facilitate EC cell to 

participate in host-pathogen interaction (68). The severe combined immunodeficiency (SCID) 

mice without T-cell receptors are suffered from lack of EC cells and have low circulating 

level of serotonin (69-71). Similar situations have been observed in the inflammatory bowel 

disease and constipation-predominant irritable bowel syndrome (C-IBS) (69, 71-72). 

Conversely, diarrhoea-predominant irritable bowel syndrome (D-IBS) is characterized by rise 

in plasma serotonin levels. D-IBS can be attenuated by 5-HT3 receptor antagonist or, 

inhibitor of tryptophan hydroxylase-1 (the rate-limiting enzyme in the synthesis of serotonin) 

(69). All evidence points out to the fact that EC cells contribute to the patho-physiological 

mechanisms of these inflammatory disorders in the GI tract (69, 71-72). In addition to 

serotonin, melatonin is another important tryptophan derivative found in the EC cells. 

Discovery of melatonin being a potent antioxidant and an immunomodulatory molecule is a 

major breakthrough in understanding the functional diversity of the EC cells in GI tract. The 

importance is discussed in the following sections. 

 

3. EC CELLS ARE THE PRIME SOURCE OF MELATONIN PRODUCTION IN 

THE GI TRACT 

 

     The presence of melatonin in GI tract is well documented without debate (4, 20, 73-75). 

By the use of different methodologies including immunohistology, radioimmunoassay and 

high performance liquid chromatography, it is confirmed that the abundance of melatonin 

primarily localizes in the EC cells (3, 22, 28, 76).The result from autoradiographic studies 

indicated that melatonin utmost bound to the mucosa and villi of the GI tract (32). At the sub-
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cellular distributions, the maximum binding of melatonin was detected in the nuclear fraction 

followed by microsomal, mitochondrial and cytosolic fractions, respectively (28, 77). The EC 

cells are the active melatonin synthetic cells among other cells in GI tract (4). The 

immunohistochemical assay has identified that the antibodies of melatonin and its immediate 

precursors (serotonin and N-acetylserotonin) all are present in the EC cells (78-79). The 

different methodologies including Coon’s indirect immunofluorescent and 

immunoperoxidase further detected the large quantity of melatonin and its precursors in the 

GI tract of mammals and humans (80). A question raised is whether the melatonin is 

synthesized by the EC cells, or it is taken up from the other sources by these cells? To answer 

this question, it requires to identify whether the melatonin synthetic machinery is also present 

in these cells. Not surprisingly, the melatonin synthetic rate-limiting enzymes, HIOMT (or 

SAMT) and AANAT (or SNAT), have been found in EC cells (12, 20, 38, 81-82). These 

observations have unambiguously proven that EC cells de novo synthesize melatonin. Since 

the total number of EC cells greatly surpasses the number of the pinealocytes and EC cells  

are responsible for 95% of serotonin synthesis (precursor of melatonin) in  mammals (83), a 

mathematical calculation indicated that the amounts of melatonin produced by the EC cells  

might be several hundred-fold higher that that produced by pineal gland. 

 

4. BIOSYNTHESIS OF MELATONIN IN EC CELLS 

 

     The melatonin synthetic pathway in the EC cells should be as same as in pinealocytes 

since they share the same enzymes. This pathway is illustrated in the Figure 1. Briefly, EC 

cells take up L-tryptophan from the circulation. Tryptophan-5-hydroxylase or, 

monooxygenase converts L-tryptophan to 5-hydroxy-tryptophan (5-HTP) (84). L-aromatic 

amino acid decarboxylase then decarboxlates 5-HTP to form serotonin or, 5-hydroxy 

tryptamine (5-HT) (85). AANAT (or SNAT) acetylates serotonin to form N-acetyl serotonin 

(NAS) (86) which is further o-methylated by HIOMT (or ASMT) to form melatonin (87). 

The melatonin synthetic sites in EC cells probably occur in mitochondria as it occurs in 

pinealocytes (88-90). The regulatory mechanism of melatonin synthesis in EC cells is not 

available currently, but it is not regulated by light as in the pineal gland. It seems that its 

synthesis is under central regulation triggered by intestinal contents (80). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Biosynthetic pathway of melatonin in the EC cells in mammals. 

     AANAT:arylalkylamine-N-acetyl transferase, HIOMT:hydroxyindole-O-

methyltransferase, arrows indicated the direction of the reactions. 
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5. RECEPTORS OF MELATONIN IN THE GI TRACT 

 

     Identification of melatonin receptors and/or their binding sites in the gastrointestinal cells 

suggests the paracrine actions of melatonin generated by EC cells locally (76, 91). Melatonin 

acts on its two primary membrane receptors MT1 and MT2 to produce different biological 

consequences in GI tissues. For example, activation of MT1 triggers G-protein mediated 

signalling, but inhibits cAMP signalling (92). On the other hand, activation of MT2 regulates 

phosphoinositol signalling pathway, but suppresses adenylyl cyclase and guanylyl cyclase 

mediated signalling pathways (92). Both MT1 and MT2 act synergistically to mediate 

melatonin’s signal. MT3 receptor, which is actually human quinone reductase-2, is also 

thought to be involved in melatonin mediated signalling (38, 93). Apart from its membrane 

receptors, melatonin also can bind to several nuclear receptors including RZR/RORγ (94) to 

mediate some of its biological activities (95-96). Currently, MT1 and MT2 receptors have 

been identified in the mitochondrial membrane of gastric endothelial cells (97). The authors 

speculated that some physiological effects of melatonin on GI tract, for example, 

angiogenesis, might be mediated by its mitochondrial melatonin receptors rather than the 

membrane receptors. This observation remains to be confirmed.  

 

6. FUNCTIONAL DIVERSITY OF MELATONIN IN THE GI TRACT 

 

     Being an amphiphilic molecule melatonin can diffuse through any biological membrane to 

reach its targets inside and outside of the cells. Presence of its specific transporters in cellular 

and mitochondrial membranes (98-101) facilitates melatonin’s transportation against its 

concentration gradient. In this way, melatonin can accumulate in extremely high 

concentrations in some sub-cellular sites such as in mitochondria. Additionally, its wide 

presence in the inside/outside of the cells and its variety of receptors render this molecule to 

have pleiotropic physiological as well as pharmacological effects in GI tract (20, 37-38, 102-

103). 

 

6.1. Melatonin as an antioxidant against gastrointestinal injuries induced by oxidative 

stress. 

 

     The advantage of melatonin as an antioxidant over other antioxidants is its ubiquitously 

protective effects on GI injuries caused by a variety of etiologies (Figure 2) (12, 20, 38, 104). 

Melatonin not only directly scavenges a broad spectrum of reactive oxygen species (ROS), 

but it also upregulates different antioxidative enzymes and downregulates prooxiative 

enzymes. These are classified as its receptor-independent or dependent antioxidant activities 

(103, 105-112). 

     As to its receptor-independent activity, melatonin interacts with highly toxic ROS 

including hydroxyl radical, peroxynitrite anion, peroxinitrite, peroxyl radicals and singlet 

oxygen (106-110). This direct antioxidant property of melatonin has been confirmed not only 

through in vitro but also in many animal studies (109, 113). A protective role of melatonin 

has been frequently reported in ischemia-reperfusion induced GI injuries by caused by 

diverse stressors including bacteria (114-120). In addition, melatonin treatment upregulates 

matrix-metalloproteinase-2 (MMP-2) but downregulates MMP-9 levels which is mediated by 

MT2 receptor in GI tract, finally suppressing the tissue ROS level (121-122). The interactions 

of melatonin with ROS generate several products which also exhibit profound antioxidant 

capacity (107-108, 123-124). The continuously free radical scavenging activity of melatonin 

with its metabolites has been classified as the antioxidant cascade reaction. From this reaction 

one melatonin molecule can scavenge up to 10 ROS (125).  
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     The indirect antioxidant activity of melatonin is mediated by its membrane and nuclear 

receptors (126-127). In this pathway, melatonin upregulates a serial of stress responsive 

genes including AMPK, HIFα, Sirt, etc. (128-129). Activations of these pathways lead to 

upregulation of variety of antioxidant enzymes including SODs, catalase, glutathione 

peroxidase and glutathione reductase (103, 127, 129-131), thus, further reduces the oxidative 

stress and protect the tissue injuries in GI tact.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Effects of melatonin produced by the EC cells on multiple oxidative stresses in 

the GI tract.  

     NSAIDs: Non-steroidal anti-inflammatory drugs; ROS: reactive oxygen species; Arrows: 

indicated the direction of the reaction, Bars: blocking activity. 

 

6.2. Effects of melatonin on GI tissue injury induced by heavy metal toxicity. 

 

     Heavy metal pollution is a serious global problem. It not only destroys the ecosystem but 

also is a major hazard for human health. Usually, the GI tract is the primary site to first 

contact with heavy metals. Heavy metals can be extracted in GI system by contaminated food 

and water. If not properly treated, it will damage the GI tissues via oxidative stress (132-133). 

For example, cadmium (Cd)-induced GI injury is mediated through two possible pathways by 

disturbing mitochondrial fusion and fission process (134-137) and by activating transcription 

factor EB mediated autophagy (135). The alterations induced by Cd in GI tract can be 

protected by melatonin (138-140). In addition to Cd, melatonin also protects GI from injuries 

associated with the toxicity of mercury (138), arsenic (139) and lead (140). One of the 

protective mechanisms is its antioxidant capacity. For example, in lead-induced GI toxicity, 

pre-treatment with melatonin efficiently reduced the tissue level of lipid peroxidation and 

protein carbonyl content, possibly by restoring the activities/levels of different enzymatic and 

non-enzymatic antioxidants in the GI tract of rats (140).  

 

6.3. Effects of melatonin on non-steroidal anti-inflammatory drug (NSAID) induced GI 

damages. 

 

     NSAIDs cause severe GI injuries including bleeding, ulceration and apoptosis. The 

protective roles of melatonin on NSAID-induced GI tissue damage are frequently reported. 
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These include the beneficial effects of melatonin on indomethacin, aspirin and piroxicam 

induced GI injuries (114, 141-147). Melatonin not only protects the GI tissues from the 

adverse effects of these drugs, but also accelerates healing process of the ulcer induced by 

NSAID (141). Orally application of both melatonin and its precursor (L-tryptophan) 

accelerated the healing process of the GI mucosal damages caused by unregulated aspirin 

intake in patients (142, 146). Importantly, the data showed that the endogenously produced 

melatonin also significantly elevated in these patients. This is probably the auto-response of 

the oxidatively stressed GI tissues to increase their melatonin against the oxidative stress. 

This stress-stimulated and stress-released melatonin phenomenon has been reported 

previously (127). Melatonin treatment effectively reduced diclofenac induced intestinal 

damage with the mechanism to restore the intestinal permeability and mucosal integrity (143-

144). To increase the activities of antioxidant enzymes including peroxidase, superoxide 

dismutase and catalase in GI tract is another mechanism of melatonin protect against 

NSAIDS-induced GI damages (145). In addition, other mechanisms of melatonin also 

enhance its protective effects on the NSAIDS-induced GI damages. These include that 

melatonin inhibits gastric acid secretion, suppresses infiltration of neutrophils, increases 

mucosal blood flow in the inflamed tissues, enhances bicarbonate secretion in the duodenum 

and promotes synthesis of prostaglandins (142, 146-147).  

 

6.4. Melatonin as an anti-inflammatory agent in the GI tract. 

 

     Among the diverse pathophysiological conditions, inflammation plays an important role in 

GI disorders. Actually, melatonin is a profound anti-inflammatory molecule in the GI tract 

(102, 148-153). A major signal transduction pathway of inflammation in GI is possibly 

mediated by necrosis factor kappa β (NFkβ) (154-157). Melatonin inhibits the translocation 

of NFkβ to the nucleus, hence reduces its binding to DNA (158). The NFkβ mediated 

inflammatory pathway is primarily triggered by TLR4 and TLR5. Melatonin downregulates 

the expression of TLR4 and its signal associated genes, such as MyD88 (159). Melatonin also 

enhances the levels of Ikβ, eventually suppressing the expression of NFkβ (159). The 

multiple blocking of NFkβ pathway by melatonin lead to the suppression of overproduction 

of leukocytes, the adhesion agents and the implementation of different inflammatory cells 

(158) and all these result in the reduced inflammatory reaction in the GI tissue. On the other 

hand, aflatoxin B1 mediated intestinal lesions in rat is known to increase circulating level of 

proinflammatory cytokine IL-1β and melatonin administration profoundly reduces its level 

(160). Presence of melatonin receptors in mast cells plays a key role in modulation of anti-

inflammatory pathway and activation of these receptors by melatonin inhibits the release of 

TNF-α in the circulation or, tissue (161). In addition, metabolites of melatonin, AFMK and 

AMK, are also known to exert similar anti-inflammatory functions as melatonin (162). Other 

mechanisms also involve the anti-inflammatory activity of melatonin including suppression 

of synthesis of prostaglandins and adhesion molecules (109), inhibition of leukocyte 

transendothelial cell migration (102) and cyclooxygenase 2 expressions in the macrophages 

(163) as well as reduction of the recruitment of different pro-inflammatory cells to the sites of 

inflammation (109, 162). Similarly, melatonin administration reduced the circulating levels 

of different pro-inflammatory cytokines including IL-1β, IL-6, IL-17, interferon-γ and TNF-α 

and downregulated the expressions of protein kinase Cζ (PKCζ) and calmodulin 3 (CALM3) 

(164). In an animal study, melatonin treatment significantly reversed the colonic mucosal 

injury induced by acetic acid (AA) and further confirmed its anti-inflammatory function in GI 

tract (165). 
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6.5. Effect of melatonin on the balance of intestinal microbiota. 

 

     Roughly 1014 microbes belonging to nearly 500 diverse species exist in GI tract of 

animals (166). The normal microbial distribution defines the health and function of GI 

system. The disruptions of microbial signalling and their normal distribution pave the way for 

a number of gut related pathologies. The balance of gut microbial community with enteric 

microenvironment keeps GI healthy. A variety of factors contribute to the GI microbial 

balance. Melatonin generated by pineal gland and EC cells is one of the most important 

factors that maintain the GI healthy (167). An interesting correlation between melatonin and 

gut microbial profile was observed in high fat diet (HFD) fed mice, a model of lipid 

metabolism imbalance. Antibiotic treatment disturbed the gut microbiota and thus, promoted 

the metabolic impairment in HFD fed mice while melatonin supplementation significantly 

improved the metabolic disturbances. Further analysis indicated that melatonin had the 

capacity to re-establish the balance of GI microbiota by promoting the growth of Alistipes 

and Bacteroides which are beneficial bacteria in GI tract (168). It is speculated that 

disturbance of gut motility may lead to the development of irritable bowel syndrome (IBS) 

and gastroesophageal reflux disease (GERD) (169). Actually, these disorders may be 

associated with dysregulation of intestinal microflora. Melatonin treatment preserved the 

abundance and diversity of enteric microbiota in dextran sulfate sodium (DSS) induced 

murine collitis model (166). Besides restoring healthy gut microbial population, melatonin 

has the potency to regulate altered gut permeability and immune response initiated by 

Escherichia coli (170). On the other hand, Helicobacter pylori infection downregulated the 

expression of AANAT and HIOMT and reduced the production of melatonin in the GIT 

tissues. This may be one of the factors to promote the gastro ulceration associated with this 

bacterium. Once the infection subsides, melatonin production returns back to its normal level 

(171). Undoubtedly, the crosstalk between gut microbial population and the gastrointestinal 

melatonin is a fascinating area to be explored. 

 

6.6. Effects of melatonin on GI physiology. 

 

     In addition to the protective effects of melatonin on the GI tissues, it also participates in 

diverse of GI physiologies. Melatonin exhibits inhibitory effect on the motor activity of GI 

tract. This inhibition is directly proportional to the tone and intensity of contractions in the 

different portions of the GI tract (172-173) possibly by blocking nicotinic acetylcholine 

receptors on the submucosal nervous plexus (33). Melatonin administration suppressed cell 

proliferation and gastrointestinal motor activity induced by gastrin (174). The structural 

similarity of melatonin with the gastrin receptor antagonist (benzotript) may render melatonin 

having this effect (80). It has been known that melatonin inhibits cAMP production which 

serves potent role in hydrochloric acid secretion by the parietal cells; therefore, melatonin is 

thought to suppress HCl production. In contrast, histamine usually enhances cAMP 

production and cAMP is crucial for melatonin secretion, thus melatonin secretion from the 

EC cells may be regulated by histamine (80). Interestingly, the effects of cholecystokinin on 

the motor activities in GI tract are also mediated by melatonin. Melatonin might be the 

utmost regulator of cell proliferation in the mucosa of the GI tract (80). There are many 

physiological functions of melatonin on the GI tract and those are not the focus of the current 

review.  
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7. CONCLUDING REMARK 

 

     EC cells are the important cell type in GI tract. The importance of these cells is not 

because of their specific morphology but they synthesize melatonin. Originally, melatonin 

was thought to be solely a pineal derived hormone, but the discovery of melatonin synthesis 

in EC cells has greatly expanded the spectrum of extra-pineal melatonin sources in mammals. 

Judging from the cell numbers, it was calculated that the amounts of melatonin generated by 

the EC cells are several hundred-fold greater than that produce by pineal gland. This 

melatonin may contribute to the day time circulatory melatonin level. The gastrointestinal 

melatonin mainly functions as autocrine and paracrine to participate in diverse 

pathophysiological activities in GI tract. It protects GI tissues against damage caused by 

oxidative stress and inflammation. Melatonin can bind to its membrane receptors and/or its 

intra- as well as extra-cellular signalling molecules in exerting its physiological activities in 

GI tract. These activities include regulation of the GI movement, HCl production, cell 

proliferation, microbiota balance and prostaglandin synthesis. Collectively, discovery of 

melatonin synthesis in the EC cells in GI tract of mammals can be considered as a hallmark 

event in the field of endocrine as well as melatonin researches.  
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