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ABSTRACT  

 

     Neurodegenerative diseases are a serious health issue globally. High morbidity and 

mortality of these disorders lead to researchers further exploring more effective preventive and 

therapeutic remedies to combat these devastating diseases. An important strategy is to delay 

the progression of these debilitating diseases. The prevalence of neurodegenerative disease 

increases with aging which not only results in neuronal deterioration, but also causes the brain 

ischemia leading to stroke, and death. Melatonin, a potent endogenous antioxidant mainly 

secreted by the pineal gland, has often used in the treatment of neuropathologies with great 

success. Herein, we review the current evidence documenting melatonin’s therapeutic effects 

on neurodegenerative and brain ischemic diseases; we also summarize the known molecular 

mechanisms of its protective actions. 
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1. INTRODUCTION 

 

     Neurodegenerative diseases, characterized by irreversible and progressive loss of neurons, 

not only a major threat to human health, but also cause an enormous financial burden for health 

care systems across the world (1). Genetic alterations, obesity, inflammation and age are the 

most prevalent risk factors for the development of neurodegenerative diseases (2). These 

degenerative conditions are accompanied by locomotor deficits, memory loss and cognitive 

impairments, and share multiple biological processes including protein modification, oxidative 

stress, proteostasis, neuroinflammation, reduced neurogenesis and elevated cell loss (3-5). 

Ischemic stroke, a life-threatening  and a global concerning event, is characterized by a sudden 

blood flow interruption following an embolism or thrombosis that occludes a cerebral vessel 
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supplying in a specific brain area (6). Ischemic stroke is a leading cause of disability and death 

in the world. Of note, one out of  six individuals  will have a stroke in their lifetime, and 

approximately 14 million of people suffer from stroke annually worldwide (7).  There is no 

effective treatment for these disorders, and current therapies merely alleviate the symptoms. 

Therefore, novel and more effective therapeutic modalities are urgently required (8).  

     Melatonin (N-aceyl-5-methoxytryptamine), a multifunctional molecule mainly produced by 

the pineal gland in vertebrates, possesses many beneficial properties for health. The production 

of melatonin drops as a consequence of aging and also has lower levels in some diseases such 

as neurological disorders; this indicates that melatonin decline may contribute to the 

progression or development of human diseases as has been proposed by researchers  (9-11). In 

addition to its role in the regulation of circadian rhythms and sleep, melatonin exhibits several 

biological actions including anti-apoptotic and anti-inflammatory activities, and protection 

against free radicals, all of which have been documented in experimental models of 

neurodegenerative diseases (12, 13). The current review summarizes the available data on 

protective potential of melatonin in reference to its delaying or preventing progressive 

neurological diseases. 

 

2. CEREBRAL ISCHEMIA-REPERFUSION AND ISCHEMIC STROKE: WHAT 

HAPPENS IN THE BRAIN? 

 

     Ischemia-reperfusion injury is a common feature of ischemic stroke, which occurs when 

blood supply is restored after a period of ischemia. It is a pathological condition characterized 

by an initial restriction of blood supply in tissues or organs followed by the subsequent 

restoration of perfusion and concomitant reoxygenation. In its classic manifestation, occlusion 

of the arterial blood supply is caused by an embolus and results in a severe imbalance of 

metabolic supply and demand, causing tissue hypoxia (14). During brain ischemia-reperfusion, 

an increased  reactive oxygen species (ROS) production causes  a change in the reactivity of 

the vessels which  damages vascular endothelial cells as well as  the blood-brain barrier (15). 

Furthermore, ROS cause disability and degeneration of organelle and cell membranes through 

induced lipid peroxidation of unsaturated fatty acids (16). The accompanying cerebral edema, 

neuronal cell apoptosis, inflammation and the infarct size enlargement causes  extensive brain 

tissue injury with the death of neurons and glia leading to debilitation and possible death of the 

individuals (17). Ischemia and reperfusion also activate various cell death programs, which are 

categorized as necrosis, apoptosis or autophagy-related cell death (18). 

 

3. MELATONIN AND ISCHEMIA-REPERFUSION OF THE BRAIN: ROLES AND 

OPPORTUNITIES 

 

     Cerebral ischemia-reperfusion injury (CIRI) is a common disorder in hypertensive, diabetic 

and elderly individuals. After ischemic stroke, pathological damages may occur following 

inappropriate blood reflow with high mortality and disability rates (19). However, the efficient 

therapies beyond 6 hours after stroke onset are not currently available (20). Cerebral ischemia-

reperfusion injury is a complex pathophysiologic event, which is associated with the 

mitochondrial dysfunction, inflammation, excitotoxicity, oxidative stress, and apoptosis (21, 

22). Among these changes, oxidative stress caused by excessive ROS generation which results 

in lipid peroxidation, DNA damage, protein dysfunction and neuronal death plays an essential 

role in cerebral ischemia-reperfusion injury (CIRI) (23). To date, numerous attempts have been 

made to mitigate neuronal injury caused by CIRI; however, few efficient therapeutic options 

are currently available (24). It is well-known that CIRI precedes the actual infarction and 

morbidity; hence, the identification of the safe and effective therapeutic modalities to interrupt 
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the pathological processes of these life-threating events is essential. Several cellular processes 

including  autophagy (25), apoptosis (26), neuro-inflammation and oxidative stress involved in 

the pathogenesis of CIRI have been identified  (27).  

      Melatonin with the properties of anti-apoptosis, anti-inflammation, anti-oxidation, and 

circadian rhythm regulation has been suggested being a protective molecule against ischemic 

brain injury (28, 29). It has been reported that melatonin enhances the therapeutic impact of 

plasma exosomes on cerebral ischemia-mediated inflammation and inflammation-dependent 

pyroptosis via the TLR4/NF-κB pathway, indicating that melatonin administration influences 

the production of neural substances that have beneficial effects on CIRI. Melatonin 

downregulates exosomal miR-199a-5p and miR-100-5p to directly regulate TLR4, indicating 

the modulatory effects of melatonin  on exosomal miRNAs (30). Melatonin also alleviates CIRI 

by activating OPA1-associated mitochondrial fusion. Moreover, it maintains the optimal 

neurophysiology, reduces N2a cell death, and corrects cellular energy metabolic disorders. 

Elevated OPA1-associated mitochondrial fusion inhibits mitochondrial oxidative stress and 

mitochondrial apoptosis. Conversely, OPA1 loss abolishes melatonin protective effects on N2a 

cell viability as well as mitochondrial homeostasis (31). 

     Yang et al. showed that melatonin protects  CIRI through suppressing neuronal oxidative 

stress, inflammation, autophagy, and apoptosis (32). The role of endoplasmic reticulum (ER) 

stress involving in brain ischemic reperfusion damages has been previously reported  (26, 33); 

melatonin inhibits ER stress-mediated neuron cell death in cultured neurons and rat brains after 

ischemic reperfusion. Melatonin enhances survival of neurons in the penumbra of neural 

lesions and decreases infarction size in ischemia-reperfusion rats. It regulates protein levels 

through downregulating the expression of ER stress-related proteins including CHOP, ATF4, 

p-eIF2α, and p-PERK after ischemia-reperfusion (34). Melatonin exhibits  a potent  antioxidant 

activities in diverse in vitro and in vivo models of neurodegenerative diseases via scavenging 

free radicals and enhancing gene expression of antioxidant enzymes including glutathione 

peroxidase (GPx) and superoxide dismutase (SOD) (35). In line with this, Saleh and colleagues 

showed that melatonin restores antioxidant enzymes levels to the normal state in brains of 

ischemic/reperfusion rats (36).  

     Upon re-establishment of the blood supply, melatonin decreases reperfusion-mediated 

enhancements in pro-MMP-9 and MMP-9 enzyme activities, the expression of MMP-9 protein 

and in situ gelatinolytic activity 24 hours after transient ischemia in brain of rats. Melatonin-

mediated reduction in MMP-9 expression and activity are associated with reduced blood clot 

leakage and infarct maturation of the ischemic brain, ameliorating neurological outcomes (37). 

The therapeutic roles of melatonin on CIRI are summarized in table 1. It appears that this 

molecule is a suitable candidate for therapy of ischemia-reperfusion injury. This field is in 

desperate need of clinical trials to test the efficacy of melatonin. 

 

4. MELATONIN’S ROLE IN THE TREATMENT OF ISCHEMIC STROKE: KEY 

POINTS 

 

     As noted, stroke is a leading cause of morbidity and mortality (38). Stroke is a broad term 

indicating a variety of abnormalities caused by hemorrhage or occlusion of one of the main 

arteries which supply blood to the brain (39). Of note, disability associated with stroke results 

in considerable economic, social and emotional burden on individuals and society. It is 

estimated that, by the year 2030, the number of deaths due to stroke will reach 12 million and 

patients surviving from the stroke will increase to 70 million (40). Stroke exists in three main 

types including ischemic stroke, hemorrhagic stroke, and transient ischemic stroke; among 

them  ischemic stroke is responsible for 85% of all  cases, which is the second leading cause 

of mortality in the world (41, 42). However, except for the use of tissue plasminogen activator 
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during a short therapeutic window, few  effective  therapies  can  prevent the brain damage in 

the  patients (43-45); therefore, identification  of safe and effective neuroprotective treatments 

is a crucial and urgent task for researchers (46).  

     We have noticed an  interest  relationship between stroke and melatonin, i.e.,   patients with  

stroke have reduced levels of melatonin, indicating the possible role of this deficiency in the 

pathogenesis of the stroke (47). More importantly, melatonin has been shown a therapeutic 

option for stroke. Prophylactic melatonin application (10 mg/kg/day, i.p., 7 days)  significantly 

alleviates  ischemic injury and enhances the survival rate during 2 weeks post-ischemia with 

its neuroprotective effect  by suppressing autophagy and ER stress (28). Zou and co-workers 

reported that treatment with melatonin (15 mg/kg/day; three times) 0.5 hour before 

photothrombotic stroke onset remarkably decreased the infarction volume at 72 hours post-

stroke in the COX-1-gene wild-type mice. Melatonin may mediate its beneficial effects through 

enhancing penumbral cerebral blood flow. Thus, melatonin may exert some of its protective 

effect by enhancing and/or maintaining the activity of COX-1-gene during ischemia (48). 

     Melatonin increases neurogenesis and improves neuronal survival, even when applied one 

day after stroke (49). Melatonin preserves brain architecture integrity as well as neurological 

functions mainly via modulating oxidative stress and inflammatory signaling pathways (50). 

After transient global cerebral ischemia, chronic use of melatonin did not preserve hippocampal 

CA1 pyramidal neurons, but did improve ischemia-mediated cognitive impairments through 

remyelination via up-regulating the expression of ERK1/2 in oligodendrocytes and restoring 

glutamatergic synapses in the ischemic CA1 region (51). Kawada et al. shows that combination 

of suvorexant and ramelteon (a melatonin receptor agonist), rather than a GABA receptor 

agonist, improves subjective sleep quality without delirium induction in patients with acute 

stroke (52). Recently, an increasing number of studies have successively demonstrated that 

melatonin's neuroprotection against ischemic stroke derives from its  inhibition of 

mitochondrial cytochrome C release (53) and the decrease of inflammatory responses (54). 

Overall, melatonin has therapeutic potential against ischemic stroke; however, the large scale 

of clinical trials should be encouraged and the underlying mechanisms should be clarified. 

Table 1 summarizes current data on melatonin therapy in the treatment of ischemic stroke. 

 

5. MELATONIN, AN MOLECULE FOR THROMBOLYTIC THERAPY: A ROAD 

TO CLINICAL PRACTICE 

 

     The current treatment for acute ischemic stroke is still confined to thrombolysis and 

supportive therapy that benefits only a small proportion of stroke patients. As mentioned 

previously, melatonin has a variety of actions that may be helpful for acute stroke. Melatonin 

preserves the BBB permeability, attenuates the oxidative/nitrosative damage of ischemic 

neurovascular unit, and decreases a risk of hemorrhagic transformation accompanying the tPA-

induced thrombolysis following ischemic stroke in mice (37). Exogenous melatonin effectively 

attenuates post-ischemic MMP-9 expression and activation, and reduces the reperfusion-

induced hemorrhagic transformation and brain damage following a cerebral ischemic–

reperfusion insult (55). Findings indicate that melatonin decreases acute ischemic brain 

damage, brain edema and hemorrhagic transformation, and may be a suitable add-on medicine 

to thrombolytic therapy for ischemic stroke patients (55). In mice treated with tissue 

plasminogen activator (t-PA), melatonin increases neuronal survival after 30 minutes middle 

cerebral artery occlusion through suppression of caspase-3 activity; however, t-PA itself 

significantly reduces the degree of injury (56). In an in vivo study, at 6 hours after photo-

irradiation, either melatonin or t-PA, or a combination therapy with both melatonin and t-PA, 

did not significantly influence brain infarction, in comparison to controls. Subjects treated with 

t-PA had enhanced hemorrhagic formation, and these events were efficiently reversed by co-
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therapy with melatonin. Therefore, melatonin ameliorates the postischemic damage  of the 

BBB permeability and reduces the risk of adverse hemorrhagic transformation after t-PA 

therapy for ischemic stroke (57). The findings further support melatonin’s pleural 

neuroprotective actions and indicate that melatonin may be suited either as a single treatment 

or an add-on substance to thrombolytic therapy for ischemic stroke patients. 

 

6. THERAPEUTIC EFFECT OF MELATONIN ON NEURODEGENERATIVE AND 

NEUROLOGICAL DISEASES 

 

     Reduced melatonin levels are found in the blood and cerebrospinal fluid of Alzheimer’s 

patients, even during the early onset of the disease (58). Decreased local melatonin synthesis 

in neuronal and immune cells, as well as in the glia and gut, may be critical for  the etiology 

and management of Parkinson’s disease (58). Clinical trials have investigated the role of 

melatonin supplementation in the alleviation of  symptoms of Alzheimer’s disease (59). The 

vast majority of clinical investigations support the beneficial effects of melatonin on cognitive 

impairment and sleep disorders (60-63). The cognitive impairment is a crucial symptom of 

neurodegenerative diseases. Animal study has also shown that melatonin attenuates isoflurane-

mediated ER-stress and neuroapoptosis in the hippocampus, and reduces the serum levels of 

neuroinflammatory factors in newborn rats, leading to improved spatial memory and learning. 

Furthermore, suppression of the SIRT1/Mfn2/PERK pathway by lentivirus transfection results 

in the reduction of melatonin’s neuroprotective effects (64). Sun et al. reported that beneficial 

actions of melatonin in improving spatial learning and memory probably involve 

downregulation of BACE1 and mitophagy (65). Therapeutic effects of melatonin on the 

treatment of neurodegenerative diseases will be discussed below.   

 

6.1. Alzheimer diseases. 

 

     Alzheimer’s disease (AD), characterized by progressive memory loss and cognitive 

impairment, is the most prevalent age-related neurodegenerative disease. Alzheimer’s disease 

is the cause of 60 to 80% of all dementias (66) and is significantly more common in females 

than in males. Around 35.6 million people are predicted to have AD worldwide, with 4.6 

million new cases diagnosed each year (67). The chance of having the disease increases every 

five years after the age of 60; these rates rose from about 0.17% per year at age 65 to 0.71, 1.0, 

and 2.92% per year at ages 75, 80, and 85, respectively (68, 69). The primary etiology of AD 

is unknown and several factors including genetics, age, gender, and diet have a role in its 

development (70, 71). 

      The extracellular amyloid plaques and intracellular neurofibrillary tangles (NFT), the 

former predominantly in the form of β-amyloid (Aβ) and the latter in the form of 

hyperphosphorylated tau, may be considered its most outstanding pathological biomarkers. 

Irregular homeostasis of Aβ is a primary factor and often the initiator of AD. In other words, 

the accumulation of Aβ peptides, also referred to as senile plaques, due to the imbalance 

between their formation and removal results in the oxidative stress and subsequent 

inflammation and apoptosis in neural cells (72-74). 

     Melatonin as a small molecule  easily crosses blood-brain barrier, where it binds to its  

receptors, MT1 and MT2 (75), and also has antioxidant action independents of its receptors 

(76). Studies have shown that melatonin levels in AD patients are lower than normal 

individuals of a similar age (77-79). The age-related drop in melatonin levels may associated 

with the progression of AD (80, 81). Studies using the APP695 transgenic mouse AD model 

have suggested that melatonin administration improves learning and memory impairment (82). 

Ample studies indicate that melatonin may be an effective treatment for AD pathology in the 
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early stages of the disease due to its antioxidant and antiapoptotic effects (83, 84). Moreover, 

researches have demonstrated that melatonin may reduce Aβ production, independent of its 

antioxidant effects.  

     In AD, Aβ peptides are derived from the aberrant cleavage of the amyloid precursor protein 

(APP) (85). Evidence has revealed that melatonin may reduce Aβ formation (86) by modulating 

cAMP level (87, 88),  to interfere  APP gene expression. Melatonin promotes non-

amyloidogenic processing and α-secretase function. MT1 and MT2 activation by melatonin  

stimulates  the Gq/ PLC/ PKC, Gi/ PI3K / PDK1/ PKC and Gs/ cAMP/ PKA signaling 

pathways and resulting in ERK1 phosphorylation which, then,  phosphorylates CREB and Oct-

1 enhances ADAM10 transcription and lowers Aβ overproduction (89). In addition, melatonin, 

as a stimulator of SIRT1 (90, 91), may trigger ADAM10 expression, promote non-

amyloidogenic processing, and protect against excess Aβ generation (86, 92, 93).  

     Melatonin modulates the two major regulators of Aβ synthesis. First, melatonin promotes 

the expression of PIN1, a cis-trans peptidyl-prolyl isomerase, which is a crucial factor in 

inhibiting Aβ formation; as a result, to inhibit amyloidogenic process. Studies have suggested 

that melatonin treatment increases the expression of PIN1 mRNA and protein in a dose-

dependent manner and lowers Aβ production (94). Second, melatonin inhibits the 

amyloidogenic process by blocking GSK-3 phosphorylation. Studies reveal that GSK-3β is 

overproduced in the brains of patients with AD, and this  production rises with age. Strong 

evidence suggests that impaired GSK-3β regulation impacts Aβ formation and tau 

hyperphosphorylation in AD (87). Melatonin inactivates GSK-3 and lowers Aβ formation by 

activating and phosphorylating PKC. To achieve this, melatonin interacts with the MT2  to 

activates  the PLC / DAG / PKC pathway (87). The PKC activation  also inhibits Aβ formation 

by promoting α-secreted non-amyloidogenic APP processing (87). The PKC protein is 

oxidative stress-sensitive and an oxidizing environment may inactivate this signaling molecule. 

Therefore, as an antioxidant, melatonin prevents PKC inactivation by reducing oxidative stress 

(86).Tau hyperphosphorylation is another major  pathogenic feature in the pathophysiology of 

AD, which contributes to the disruption of tau binding to microtubules and the subsequent 

alterations in the stability of microtubules; melatonin attenuates Tau hyperphosphorylation by 

inhibiting GSK-3β (75). 

     Melatonin, on the other hand, increases the glymphatic CSF/interstitial fluid (ISF) exchange 

system. The glymphatic system is an active water exchange process in the extracellular space 

(ECS) in the brain; it serves the same purpose as the lymphatic system in other tissues (95). 

CSF/ISF exchange is assisted by aquaporin-4 (AQP4) which are abundantly expressed in 

astrocyte perivascular end feet (96, 97). This system helps to clean Aβ peptides and Tau 

proteins from brain. Studies have revealed that Aβ peptide elimination increases considerably 

during sleep (98), and failure of Aβ clearance, as a cause of sleep disturbance, might exacerbate 

the progression of AD. This is also applied to the tau protein. Studies have found that in a 

murine traumatic brain injury model, AQP4 depletion increases neurofibrillary tangle 

formation and the accumulation of extracellular tau (99). Moreover, glymphatic Aβ clearance 

is augmented when AD transgenic mice receive melatonin treatment (100). 

     Clinical research has shown that melatonin levels are lowered in AD patients compared to 

healthy subjects (101) and treatment with melatonin alleviates mild cognitive impairment (83, 

84). Theoretically speaking, the beneficial effects of melatonin in inhibiting AD disease is 

evidence, especially in experimental animals; nevertheless, further large scale of clinical trials 

are required to determine efficacy of melatonin in the treatment of AD patients. 
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6.2. Parkinson disease. 

 

     Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting 

about 1.8% of people over 65; the number of PD patients is expected to double by 2030 (102, 

103). Several underlying factors, including age, sex, socioeconomic conditions, and genetics 

are involved in development of Parkinson's disease (103). Symptoms of the disease include 

motor (tremors, swallowing difficulty, rigidity, hypokinesia, bradykinesia, and postural 

instability) and non-motor (cognitive and sleep disturbances) dysfunctions (104). The major 

pathogenic cause of the disease is the reduction in dopaminergic neurons in the substantia nigra 

(SN) (73) and striatum (103, 104). Motor symptoms arise after the loss of 3/4 of the 

dopaminergic cells in the SN (105). In addition, increased inflammatory factors including NF-

κB, IL-1, IL-6 (106), Cox-2, TNF-α, iNOS, and INF-γ (107, 108) in glial cells and elevated 

oxidative stress due to excessive free radical generation following mitochondrial damage play 

an essential roles in the progression of the disease (109-111). 

     A reduction in melatonin MT1 and MT2 density in certain regions of the brain, such as in 

the amygdala and SN, is common in patients with PD (106). In experimental PD model , 

melatonin  increases the concentration of nigral and striatal dopamine (112); it also reportedly 

prevents the depletion of dopamine and disruption of dopaminergic neurons (113) and 

neurotoxins-induced dopaminergic neuron death (114, 115). Moreover, Ozsoy et al. 2015 

demonstrated an elevation in the activity of superoxide dismutase (SOD), catalase, and 

glutathione peroxidase (GPx) and reduction in the malondialdehyde (MDA) level and death of 

dopaminergic neurons after melatonin treatment in the SN of rats with PD model induced by 

6-OHDA (116). Administration of melatonin also reduces oxidative stress in the mouse model 

of PD resulting from administration  of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) 

(117), a frequently-used drug to induce PD-like signs. A significant reduction in the MPP (+)-

induced oxidative stress has been reported after treatment of cortical neurons with melatonin 

(118). Regarding melatonin's capacity to suppress free radicals, transfer electrons, and repair 

damaged biomolecules, it may effectively protect neurons and glial cells from the oxidative 

stress pathway in PD. 

     In vitro and in vivo studies have demonstrated that melatonin reduces DNA fragmentation 

and mitochondrial deficiency in PD models (112, 118-120). Moreover, melatonin decreases P-

p53, Bax, and caspase 9 expression (113) and increases Bcl-2 and p53 levels (121), leading to 

the inhibition of the apoptosis pathway. Melatonin  limits neuroinflammation by inhibiting 

COX-2 activity in the mouse model of PD induced by MPTP (117). In addition, López et al. 

(152) have found that in MPTP-induced PD mice, melatonin prevents the rise of iNOS, as a 

pathologic hallmark of PD-associated neuroinflammation (122). Over-expression of α-

synuclein is strongly associated with PD pathogenesis (123, 124). α-Synuclein accumulation 

and fibril formation cause apoptosis, dopaminergic nerve terminal damage via caspase 

activation (125-127). The protective effect of melatonin on α-synuclein-induced damage to 

dopaminergic neurons in the SN has been observed in animal models (114). Melatonin prevents 

α-synuclein assembly and fibril formation (128) by  suppressing protofibril development and 

instability in precursor fibrils (114, 128). 

     The expression of AQ4 is significantly reduced in PD patient brains compared to the healthy 

individuals (129). The AQ4 water channels have an essential role in lowering CSF α-synuclein 

levels (130). As mentioned previously,  melatonin preserves the function of glymphatic system 

and increases AQ4 expression (86); hence, it has a favorable effect on PD patients. Based on  

the data obtained from  experimental models of Parkinsonism, it can be concluded that 

melatonin have the potential to suppress  the progression of this neurodegenerative disorder 

(131). However, further clinical trials are required to definitively prove the beneficial effects 

of melatonin on PD patients. 
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6.3. Amyotrophic lateral sclerosis. 

 

     Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder, characterized by 

progressive death of motor neurons in the ventral horn of the spinal or bulbar level. This 

neurodegenerative disorder is categorized in two forms including non-hereditary form, which 

is the most common (90–95%) and the familial-type of ALS (FALS), associated with genetic 

dominant inheritance factor which constitutes the remaining 5–10% of the ALS cases. Muscle 

weakness, twitching, and cramping are the most common symptoms of ALS, leading to muscle 

impairment (11). Due to the role of oxidative stress in the pathogenesis of ALS, melatonin, as 

an antioxidant and free-radical scavenger, is suggested to be a beneficial treatment for patients 

with ALS (9). The impact of melatonin on progression and overall survival of ALS has been 

investigated through a Cox proportional hazards ratio model which determined the effect of 

melatonin on time to death. As secondary outcomes, the effect of melatonin on standardized 

ALS functional rating scale (sALSFRS) and percentage of predicted forced vital capacity 

(FVC) scores has been investigated by linear mixed effects regression models. The rate of 

annualized hazard death has been significantly reduced in melatonin users compared to the 

non-melatonin users [HR=0.241 (95% CI 0.088 – 0.659), p=0.0056]. Furthermore, the rate of 

decline in the sALSFRS score and change in the percentage of predicted FVC score was slowed 

in melatonin treated patients compared to the patients did not receive melatonin (9).  

Considering the positive outcomes with the use of melatonin in ALS, further research of 

melatonin is warranted to investigate its possible efficacy in treating this deadly disease. 

 

6.4. Multiple sclerosis.  

 

     Multiple sclerosis (MS) is a neuroinflammatory, chronic, autoimmune demyelinating 

disorder of the CNS which usually appears in young adults; the condition influences millions 

of people, either as patients or as care givers across the world (132). Its clinical manifestations 

are variable including sensory and visual impairments, coordination and motor disturbances, 

and pain, spasticity, fatigue, and cognitive defects (133). Multiple sclerosis is related to 

numerous pathophysiological mechanisms such as oxidative stress, multiple leukocytes 

infiltration, altered immune system, chronic inflammation, breaching of the BBB as relapsing-

remitting (RR) episodes, demyelination leading to neuronal and axonal damage, remyelination 

and repair systems activation (134-136). A combination of autoimmune, environmental, and 

genetic factors contributes to the risk of developing MS (137). Currently, several 

immunosuppressive and immunomodulatory therapies are available to regulate immune 

responses of patients. However, these treatments have limited curative effects and are also 

associated with serious side effects. Thus, it is essential to explore safe and effective 

complementary and/or alternative therapeutic approaches. It has been observed  that the pineal 

calcification caused low  melatonin level  are associated with the increased incidence of  MS 

in patients, particularly in those with some degree of brain atrophy (138). Of note, the levels of 

urine 6-sulphatoxymelatonin levels (the major melatonin metabolite) are lower in MS patients 

compared to healthy subjects, indicating the possible involvement of melatonin in MS 

pathogenesis (139). The therapeutic effect of melatonin on MS has been investigated in animal 

studies and human trials. Melatonin considerably decreases the clinical scores of experimental 

autoimmune encephalomyelitis (EAE) as well as the demyelinating plaques number. 

Moreover, melatonin reduces the mRNA expression of the regulatory enzyme of kynurenine 

pathway, indoleamine 2,3-dioxygenase 1 (140). 

     Pyruvate dehydrogenase (PDH) is a crucial modulatory enzyme in energy metabolism and 

catalyzes the pyruvate to form acetyl-coenzyme A (141-143). Pyruvate dehydrogenase kinase 

(PDK) is able to negatively modulate PDH activity through phosphorylation of one of its 
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subunits. PDK possesses four identified tissue-specific isozymes, sharing 70% DNA sequences 

(144). The combination of melatonin and disopropylamine dichloroacetate, a PDK4 inhibitor, 

has been shown to have beneficial effects on cerebral metabolism and remyelination in animal 

model of MS. This co-therapy seems to have better effect to inhibit pro-inflammatory and 

increase anti-inflammatory cytokines than melatonin treatment alone and promotes the 

recovery of the expression of the decreased oligodendrocytic markers in EAE. This co-

treatment also restores PDC function while decreasing the lactate levels (145). To target the 

memory defects in MS, melatonin shows its therapeutic effects by upregulating cAMP-

response element-binding protein to increase the gene expression of the postsynaptic density 

protein 95 and synapse-associated synaptophysin in the prefrontal cortex (146). A result from 

a 6-month clinical trial shows that melatonin significantly decreases the serum levels of pro-

inflammatory cytokines including TNF-α and IL-1β, and oxidative stress in RR-MS patients 

(147). In a pilot study, Jallouli et al. have reported that acute nocturnal melatonin (6 mg) 

ingestion is safe for increasing mobility, fall risk and postural balance in RR-MS patients, 

probably by ameliorating cognitive function and sleep quality (147). In a case report, a patient 

with MS treated with pharmacological doses of melatonin for several years exhibited 

remarkable improvement in all aspects of the disease (148). Hsu and colleagues also showed 

that the use of melatonin significantly ameliorates the mean total sleep time in MS patients 

(149). Table 1 summarizes current evidence on the therapeutic roles of melatonin in 

neurodegenerative diseases including MS. 

 

6.5. Huntington disease. 

 

     Huntington's disease (HD) is a devastating genetic neurodegenerative disease, affecting 8 

to 10 persons per 100,000 people globally. There is no effective treatment for this 

neurodegenerative disorder.  HD is characterized by progressive motor disorders, cognitive 

impairment, psychiatric problems, dementia, depression, and weight loss (150). The recurrence 

of cytosine-adenine-guanine (CAG)c sequence in exon 1 is the primary cause of HD, which 

initially affects the striatum and then the cortex (151). Until recently, the definite function of 

the Huntington protein remained unknown (152). 

     In HD, oxidative stress plays a key role in the pathology of neuronal degeneration and 

damage (153-156). Reactive oxygen species induce the DNA damage with  high levels of 8-

hydroxydeoxguanosine in the putamen of HD patients (157). To date, treatment of HD with 

emphasis on antioxidant protection seems partially effective. Melatonin is effective in lowering 

oxidative damage in the central nervous system due to its ability to rapidly passing the blood-

brain barrier. Antioxidant properties of melatonin are multiple including directly scavenging 

free radicals, inducing mitochondrial and neuronal nitric oxide synthase activity by binding to 

the calcium-calmodulin complex and increasing activities of antioxidant enzymes such as  

SOD, GPx and catalase (158-161). 

     Melatonin has profound protective effect on mutant Huntington (mutant-htt) ST14A cells, 

an in vitro model of HD (53, 156, 162). 3-nitropropionic acid, a mitochondrial complex II 

inhibitor, accurately induces the neurochemical, histological, and clinical characteristics of HD 

and is therefore utilized as an experimental model of HD (163, 164). In a 3-nitropropionic acid-

induced rat model of HD, melatonin delayed the symptoms of HD through its antioxidant 

actions (165). 

     Melatonin may also prevent the release of cytochrome c from mitochondria into the 

cytoplasm and the activation of mutant Htt-induced caspase-1, hence suppressing 

mitochondrial and cell death pathways. A relation has been observed between MT1 receptor 

expression and development of HD (166, 167). Mutant Huntington-mediated toxicity leads to 

the loss of MT1 receptors.  The deficiency of MT1 receptors sensitizes neurons to cell death, 
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while overexpression of these receptors protects neurons. Furthermore, MT1 receptor 

expression decreases as HD progresses, and melatonin administration delays the reduction of 

these receptors. Melatonin also delays disease onset and death in R6/2 mice (CAG repeated 

110-115 times); this effect of melatonin is mediated by the activation of MT1 receptors (166, 

167).  

     The accumulation of intracellular calcium, which causes mitochondrial dysfunction, and the 

stimulation of the N-methyl-D-aspartate (NMDA) receptor are other means to induce HD-like 

pathogenesis (168). Kainic acid is the most commonly used excitotoxic agents to induce HD 

models in both rodent and primate.  Melatonin diminishes the neuronal excitotoxicity generated 

by kainic acid in vivo and in vitro conditions  by decreasing lipid peroxidation and free radical 

production  caused by interaction of kainic acid with NMDA receptors (169). In summary, 

considering the positive preliminary findings, additional basic and clinical research should be 

pursued to further clarify the effects of melatonin treatment on HD.   

 

6.6. Traumatic brain injury. 

 

     Traumatic brain injury (TBI) is a leading cause of long-term disability and mortality in 

young adults. The devastating consequences  of TBI on emotion, executive functioning, and 

cognition have been well established (170). The increased evidence suggests   that TBI is a risk 

factor for neurodegenerative diseases such as Alzheimer’s disease(171) . Currently, there are 

no Food and Drug Administration (FDA)-approved medicines  for treatment of  TBI (172). 

Melatonin has many potential beneficial effects as a treatment for TBI (173). Melatonin is the 

most colloquially known sleep aid sold as the form of food supplement (174). Melatonin is 

produced in  pineal gland at night  to  configuration of circadian rhythm, but, it  also has 

pleiotropic effects including anti-inflammatory, antioxidant, and cell cycle-modulating 

properties (175). In this review, we summarize the role of melatonin in preventing post-TBI 

neurodegeneration, particularly focusing on melatonin’s potential to reduce the risk of 

cognitive impairment after TBI. The available data highlight its neuroprotective and anti-

inflammatory effects. Melatonin reduces neuroinflammation and edema, late-phase activation 

of nuclear factor-kappa light chain enhancer of activated B cells (NFkB) and activator protein 

1 (AP-1) to the basal level while promotes the activity of SOD and GPx to protect cerebral 

tissue from oxidative stress (176). Studies on adult mice have shown that melatonin at specific 

doses decreases lipid peroxidation levels and promotes antioxidant activity following TBI 

(176). Melatonin preserves hippocampal neurons following brain trauma and limits deficits in 

spatial memory as identified by performance in a water maze task (173).  

Furthermore, in addition to its inhibitory effects on inflammatory processes following TBI, 

melatonin appears to indirectly influence cognitive function by regulating sleep-wake cycles 

(177). Melatonin exhibits neuroprotective effects through its anti-inflammatory and antioxidant 

function to  reduce  the excessive neuronal reactions  occurring after TBI in  human brain (172). 

The proposed include, as noted,  its ability to attenuate pro-inflammatory NF-kB signaling, 

scavenge free radicals, decrease apoptotic cell death, and reduce the expression of abnormal 

proteins such as Aβ and p-tau (172). A reduction in such secondary injury processes may result 

in decreased risk of developing neurodegenerative diseases such as Alzheimer’s disease 

following TBI (178). Beyond the direct anti-inflammatory and antioxidant actions of 

melatonin, the receptor-mediated actions are also involved in the protection against TBI as well 

(179).  

Although evidence suggests melatonin’s ability to reduce post-TBI cognitive decline as 

measured by subject performance on memory tasks, the longitudinal data on whether melatonin 

decreases the risk of developing dementia after TBI is lacking. Thus, research into the role of 

the long-term protective actions of melatonin in individuals suffering with TBI is warranted.  
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6.7. Spinal cord injury. 

 

     Spinal cord injury (SCI) often results in the loss of sensory and motor function (180). In 

severe cases, SCI leads to paralysis and death. In patients with SCI, primary injury from the 

initial trauma is followed by a secondary injury cascade of cellular and molecular events (181). 

The secondary injury exacerbates neurologic damage and enhances loss of function. This 

secondary injury may be caused by the production of ROS and reactive nitrogen species (RNS) 

which  damage protein, DNA, and cell membranes. The consequences of the secondary injury 

include mitochondrial dysfunction, neurotransmitter accumulation, disruption of the blood-

brain barrier and blood-spinal cord barrier (BSCB), apoptosis, excitotoxicity, and 

inflammatory and immune processes (181). Melatonin exerts neuroprotective effects for the 

secondary pathophysiological processes associated with SCI (182). Melatonin regulates  the 

altered  levels of MDA, glutathione (GSH), SOD and myeloperoxidase (MPO) after SCI and 

manages them back to the normal levels (183). Melatonin may also protect tissues from 

secondary injury of SCI through other biological actions such as inhibition of inflammation, 

apoptosis, and attenuation of edema (184). Therapeutic potential and underlying mechanisms 

of melatonin for SCI are reduction of oxidative stress, regulation of nitric oxide synthase 

(NOS), anti-inflammation, promoting BSCB repair, inhibition of apoptosis and attenuation of 

edema (184). The bulk of studies illustrating the beneficial actions of melatonin in reducing 

the severity and improving recovery from SCI come from experiments in animals; clearly, what 

is needed are clinical trials specifically designed to examine the efficiency of melatonin on SCI 

patients. 

 

7. REGENERATIVE ACTIVITIES OF MELATONIN IN THE RECOVERY OF 

NERVE INJURIES 

 

     The peripheral nervous system relays information between the CNS and peripheral 

receptors located throughout the body (185). Most peripheral nerve injuries (PNI) are 

secondary to toxicity from local anesthetics, surgical resection, or trauma. Severe neuropathic 

pain is one of the morbidities that occurs following PNI (186, 187). Application of novel 

strategies is required to improve the recovery of injured nerves. 

     Melatonin exhibits  beneficial potentials in neuroregeneration after  PNI (188). Melatonin 

promotes the migration and proliferation of Schwann cells via the Shh signaling pathway after 

PNI, leading to the peripheral nerve regeneration (189). Sciatic nerve damage causes a 

remarkable decline in nerve conduction velocity. According to the findings from a recent 

investigation, melatonin considerably increases the nerve conduction velocity and promotes 

the histological regeneration, as well as accelerates sciatic functional recovery compared to a 

control group receiving placebo (190). Melatonin also enhances functional recovery after end-

to-side neurorrhaphy (191). Liu and colleagues (192)  showed that animals with melatonin 

treatment displays increased β3-tubulin and GAP43 expression one month after end-to-side 

neurorrhaphy. Melatonin also promotes neurite outgrowth and increases the expression of 

melatonin receptors as well as β3-tubulin in mouse neuroblastoma N2a cells. Moreover, 

melatonin suppresses the activation of calmodulin-dependent protein kinase II (CaMKII); thus, 

β3-tubulin remodeling may involve CaMKII-induced Ca2+ signaling (192). 

 

8. MELATONIN AND MICROGLIA POLARIZATION IN NEUROLOGICAL 

DISEASES 

 

     Microglia are resident immune cells in the central nervous system (CNS), contributing to 

the maintenance of CNS homeostasis in the normal condition. Microglia can drastically alter 
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their phenotypes and functions (pro-inflammation, anti-inflammation as examples) in response 

to microenvironmental changes. Microglia play an important role in inflammatory processes 

after ischemic stroke. Modulating microglia polarization from pro-inflammatory phenotype to 

anti-inflammatory state has been suggested as a potential therapeutic approach in the treatment 

of ischemic stroke (193).  

     Retinoic acid-related orphan nuclear receptor alpha (RORα) is a crucial circadian nuclear 

receptor with a modulatory impact on immune responses. RORα has been identified as a natural 

ligand of melatonin (194). Melatonin (20 mg/kg) significantly enhances the RORα levels and 

protects dopamine neurons, with reduced inflammation and promoted anti-inflammatory M2-

like phenotype in the microglia of PD model (195). In the early stage of SCI, melatonin (50 

mg/kg) inhibits pro‐inflammatory responses and promotes M2 polarization of microglia in the 

spinal cord, contributing to functional recovery (196). Melatonin (20 mg/kg) lowers brain 

damage and reduces brain infarct through shifting microglia phenotype from pro-inflammatory 

to anti-inflammatory polarity by regulating STAT3 signaling pathway (197). Melatonin has 

been reported to effectively abrogate cellular inflammatory responses by reducing migration 

of the circulatory neutrophils and macrophages/monocytes into the ischemic brain and by 

decreasing local microglial activation within the ischemic hemisphere after transient focal 

cerebral ischemia in rats (198). Microglial necroptosis also plays an important role in the 

pathogenesis of intracerebral hemorrhage (ICH). Melatonin inhibits ICH-induced microglial 

necroptosis through inhibiting the expression of receptor-interacting protein 3 (RIP3) by 

regulating the deubiquitinating enzyme A20 expression (10).  However, the effect of melatonin 

specifically on microglia polarization after stroke and underlying mechanisms remain 

unknown. 

 

9. NEUROPROTECTIVE EFFECTS OF COMBINED THERAPY OF MELATONIN 

WITH MESENCHYMAL STEM CELL: A NEW AVENUE FOR FUTURE 

RESEARCH 

 

     Mesenchymal stem cells (MSCs) are multipotent cells that are isolated from various tissues 

such as dental tissue, placenta, periosteum, bone marrow, muscle, adipose tissue, and others 

(199, 200). For restoring organ and tissue functions, MSCs have recently emerged as promising 

sources; however, there are several potential safety risks for their clinical use such as potential 

tumorigenicity, sensitivity to toxic environments, senescence, and an availability (201). MSC-

based therapy is promising with the potential of   organ regeneration  (202). Implantation of a 

sufficient number of active MSCs can restore the function of a damaged organ caused by sepsis, 

high glucose, drugs, ischemia, wounding, and other pathological circumstances (203-206). 

However, the MSCs lifespan is restricted by the harsh microenvironment, which hence results 

in an insufficient availability of cells (207).  

Melatonin administration preserves the function of MSCs both in vivo and ex vivo. 

Melatonin generally serves as a cell-protective and homeostatic molecule protecting MSCs 

from aging, ischemia, apoptosis, inflammation, and oxidative stress, therefore, preserves their 

viability and differentiation in diverse tissues and organs (208, 209). Recently, a large number 

of studies have shown that melatonin-treated MSCs have therapeutic potential in a spectrum of 

disorders including neurological diseases. Zhang et al. (210) reported  that melatonin  and 

adipose-derived stem cells (ADSCs) co-treatment increases number of lysosomes and 

autophagosomes, and the expression of beclin-1 and LC3-II/LC3-I proteins in the recipients . 

Moreover, this combination enhances myelin regeneration and motor neuron number as well 

as decreased atrophy of the gastrocnemius muscle. The results have also shown that this 

combination  promotes  peripheral nerve regeneration through autophagic process (210). 

Currently, Liu and colleagues (211) evaluated the beneficial effects of melatonin-pretreated 
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MSCs in an animal model of SCI. They find that extracellular vesicles (EVs) derived from 

melatonin-pretreated MSCs (MEVs) boosts motor behavioral recovery and microglia 

polarization from M1 to M2 phenotype, as well as suppresses oxidative stress compared to the 

non-treated EVs. Additionally, proteomics analysis shows that ubiquitin-specific protease 29 

(USP29) is markedly enhanced in MEVs, and USP29 knockdown declined MEVs-mediated 

beneficial properties in vitro and in vivo. The data indicates that melatonin stabilizes USP29 

mRNA to produce its protective effect. 

Pretreatment of MSCs with melatonin facilitates MSCs survival and, thus, reduces AD 

complications to improve cognition and memory. In a recent study, bone marrow derived 

MSCs (BMSCs) were separated from femural and tibial bones of the rat and pretreated with 

melatonin (5μM) for 24 hours. Both melatonin-treated BMSCs  are intravenously transplanted 

into rats and they are found to transmigrate  to the brain tissues. Melatonin-treated BMSCs  

significantly boosts  memory, cognition and learning in comparison with non-melatonin treated 

BMSCs (212). The similar results have been observed by Nasiri et al. They have observed that 

intravenously transplanted ADSCs migrate into the brain of rats; however, the melatonin-

treated ADSCs produce better outcomes as to the memory, cognition and learning than the non-

treated ADSCs. Furthermore, a more significant enhancement in Aβ deposition clearance as 

well as in microglial cells reduction are observed in animals with melatonin-treated ADSCs 

compared to the non-treated ADSCs (213).  

In the case of cerebral ischemia, Tang and co-workers have reported that melatonin 

pretreated MSCs have higher survival rate in vitro and lower apoptosis after transplantation 

into the ischemic brain of animals than the non-treated MSCs. Melatonin-treated MSCs 

transplantation can effectively reduce cerebral infarction and ameliorated neurobehavioral 

outcomes. Neurogenesis and angiogenesis are significantly increased in rats with melatonin-

treated MSCs. Melatonin also elevates the p-ERK1/2 level in MSCs, which is inhibited by 

luzindole, a melatonin receptor antagonist. U0126, an inhibitor of ERK phosphorylation, can 

reverse the protective effects of melatonin, indicating that melatonin contributes to the 

improved MSC survival and functions via activating the ERK1/2 signaling pathway (214). 

Promising therapeutic potentials of melatonin-stem cell combination should be further 

examined by trials in several neurodegenerative diseases where cell loss is a major factor. 

 

Table 1. Summarized data on therapeutic effects and signaling pathways of melatonin on 

neurodegenerative diseases  

 
Disease Dose Targeting 

pathways 

Effect (s) Model Ref. 

Cerebral 

ischemia-
reperfusion 

injury 

- PERK-EIF2α  Enhanced autophagy in brain vessel endothelial cells 

preserved ER function reduced refractory stress granules. 

In vivo 

 

(215) 

 25-50 mg TNF-α, Nrf-2, HO-
1, NF-κB p65, bax, 

bcl-2 

Intranasal administration of melatonin loaded in lipidic 
nanocapsules increased antioxidant, anti-apoptotic and anti-

inflammatory effects. 

In vivo 
 

(216) 

 - - Intranasal administration of melatonin loaded in polymeric 

nanocapsules reduced hippocampal inflammation and 
oxidative stress.  

In vivo 

 

(217) 

 10, 20, 40 
mg/kg 

Bax and Caspase-3, 
IL-1β, IFN-γ, NF-

κB p65, MDA, 

ROS, 
JNK/FoxO3a/Bim  

Anti-inflammatory, antioxidant and anti-apoptosis effect. In vivo 
 

(218) 

 - GSK-3β, RIP1K  Ameliorated axonal regeneration and decreased infarct 

volume. 

In vivo 

 

(219) 

 - SIRT1-BMAL1  Enhanced cell survival, anti-apoptosis and antioxidant effects, 
and increased autophagy.  

In vivo 
 

(220) 
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 15 mg/kg α7nAchR Protective impact on ischemia/reperfusion-mediated BBB 
damage. 

In vivo 
 

(221) 

 5, 10 

mg/kg 

Akt-SIRT3-SOD2 Ameliorated cerebral infarct volume, neurological deficit, 

brain edema, and cell viability. 

Decreased ROS generation, mitochondrial swelling and 
cytoplasmic cytochrome c release. 

In vivo 

 

(222) 

 400, 1200, 

2400 
µg/kg 

MDA Reduced ultrastructural damages in white and gray matter. In vivo 

 

(223) 

 10 mg/kg MDA, NO, IL-1β, 

TNF-α, NF-kB, 

COX2  

Attenuated the cerebral ischemic injury. In vivo 

 

(36) 

 10 mg/kg TNF-α, IL-6, IL-10 Anti-inflammatory effect. In vivo 

 

(224) 

 20, 30, 50 

mg/kg 

NOX-1, NOX-2, 

p22phox, TNF-α, 

NF-κB, MMP-9, 

Bax, caspase-3, 

PARP 

Decreased infarct volume and increased antioxidant, anti-

apoptosis and anti-inflammatory effects. 

In vivo 

 

(225) 

 20 mg/kg SIRT3  Reduced cell apoptosis and neurological dysfunction. In vivo 

 

(226) 

 10, 20 

mg/kg 

Yap-OPA1 Decreased infarct area and neuron death.  In vivo 

 
(31) 

 10 mg/kg RORα Reduced cerebral apoptosis, infarct volume, ER stress and 

nitrative/oxidative stress.  

In vivo 

 

(227) 

 5 mg/kg GSHPx, SOD, 

LC3II/LC3I, MDA, 
P62, IL-10, miR-

26a-5p, NRSF TNF-

α, IL-6 

Increased antioxidant, anti-apoptotic, anti-autophagic and 

anti-inflammatory effects. 

In vivo, 

in vitro 

(32) 

Ischemic 
stroke 

20 mg/kg STAT3 Decreased brain infarct, neurologic functions and increased 
anti-inflammatory effects. 

In vivo, 
in vitro 

(197) 

 10 mg/kg ERK1/2, VGLUT-1 Improved cognitive function.  In vivo 

 

(51) 

 5, 10 
mg/kg 

doublecortin, ki67, 
adamts20, adam11 

Increased endogenous neurogenesis and cell proliferation  
and exerted antioxidant and anti-inflammatory effect. 

In vivo 
 

(228) 

 10 mg/kg MuRF1, MAFbx, 
IGF-1 

Prophylactic and therapeutic effect on muscle atrophy. In vivo 
 

(229) 

 5 mg/kg - Decreased BBB permeability and risk of hemorrhagic 

formation after t-PA therapy. 

In vivo 

 

(57) 

 10 mg/kg SIRT1, Bcl2, Bax Reduced infarct volume, brain edema, and increased 
neurological scores. 

In vivo 
 

(230) 

 20, 

50 mg/kg 

HMBG1, TLR2, 

TLR4, TRAF6, NF-
κB, IL-1β, IL-6, 

TNF-α/IFN-γ, JNK 

Improved neurological functions through inhibiting oxidative 

stress and inflammation. 

In vivo 

 

(50) 

 50 mg/kg MMP-9 Attenuated BBB disruption. In vivo 

 

(231) 

Multiple 

sclerosis 

0.1 mg/kg AhR, IDO-1 Decreased the number of demyelinating plaques and the EAE 

clinical score. 

In vivo 

 

(140) 

 6 mg - Improved functional mobility, postural balance and fall risk 

via enhancing sleep quality and cognitive functions. 

Human 

 

(232) 

 0.5, 3 mg - Improved sleep quality. Human (149) 

 1 mg/kg GSH, TNF-α Increased antioxidant and anti-inflammatory effects. In vivo 
 

(233) 

 80 mg/kg CREB, 

synaptophysin, 
PSD-95 

Ameliorated the memory defects caused by cuprizone 

toxicity.  

In vivo 

 

(146) 

 3 mg IL-1β Increased anti-inflammatory effect. Human (234) 

 80 mg/kg GSH, SOD, CAT, 

IL-1β, TNF-α 

Increased antioxidant and anti-inflammatory effects to 

improve locomotor activity. 

In vivo 

 

(235) 

 10 mg/kg PDK-4, IL-4, IL-10, 
IL-1β, TNF-α 

Increased anti-inflammatory effect. In vivo 
 

(236) 

 25 mg IL-1β, TNF-α, IL-6, 

LPO, NOC 

Increased anti-inflammatory and antioxidant effect. Human  (147) 

 1 mM SIRT1, CAT, 

MnSOD  

Increased antioxidant effect. In vitro (237) 
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 0.1 mM Th1, Th22 Increased anti-inflammatory effect. In vitro (238) 

Huntington'

s disease 

50, 100, or 

150 μg 

Cwo, Cry, Cyc, Per, 

Tim, Clk 

Ameliorated eclosion behavior and locomotion ability.  In vivo (239) 

 2, 4 mg/kg GSH, MDA, CAT, 
SOD 

Decreased 3-NPA-mediated weight loss, impaired 
locomotion, learning-memory, motor coordination and 

increased antioxidant effect. 

In vivo (240) 

 10, 20 

mg/kg 

- Restored 3-NP-mediated loss of dendritic spines in the cortex 

and striatum, and the decrease in cerebellar granule cell, but 

not hippocampal CA1 neuronal arborization. 

In vivo (241) 

 5, 20 

mg/kg 

SOD Antioxidant effect. In vivo (242) 

ALS - LC3II/LC3I, SIRT1, 
Beclin-1, p62 

Reversed the ALS-mediated short survival time, rotating rod 
latency decrease and weight loss. 

Induced autophagy. 

In vivo (243) 

 - - Reduced annualized hazard death rate. Human (9) 

 30mg/kg, 

10 l/g 

Rip2/caspase-1, 

cytochrome c, 

caspase-3 

Delayed disease onset, mortality, neurologic deterioration and 

inhibited motor neuron death and ventral horn atrophy.  

In vivo (244) 

 0.5 
mg/mL, 

50 μM, 

300 mg 

Protein carbonyl Attenuated glutamate-mediated cell death of cultured 
motoneurons. 

Delayed disease progression and prolonged survival 

Increased antioxidant effect. 

In vivo, 
in vitro 

(245) 

Traumatic 

brain injury 

200 mg/kg - Reduced brain edema In vivo (246) 

 10 mg/kg iNOS, MMP-2, 

MMP-9 

Reduced brain edema and infraction, astrocytes infiltration 

and  CCI-induced oxidative stress. 

In vivo (247) 

 5, 20 
mg/kg 

MDA, SOD, GPx Decreased BBB permeability, brain edema and ICP  
Increased veterinary coma scale. 

In vivo (248) 

 10mg/kg Nrf2-ARE Improved cortical neuronal degeneration, brain edema 
and antioxidant effect. 

In vivo (249) 

 10 mg/kg TNF-α, mTOR, 

p70S6K, S6RP, IL-

1β 

Restrained microglial activation and increased  

anti-inflammatory effect. 

In vivo (250) 

 5, 10 

mg/kg 

GPx, β-carotene, 

vitamin C, and E 

Increased antioxidant effect. In vivo (251) 

 5 mg/kg caspase-3 and -9, 

ROS 

Increased antioxidant effect and decreased intracellular free 

Ca(2+). 

In vivo (252) 

 5, 10, 20 

mg/kg 

GFAP  Decreased astrogliosis and increased antioxidant effect. In vivo (253) 

 10 mg/kg Bax, cytochrome c,  Induced autophagy and inhibited apoptosis. In vivo (254) 

 4 mg/kg p38, ERK-1/2, 

SAPK/JNK-1/2, 
iNOS  

Melatonin/memantine combination decreased brain injury 

and DNA fragmentation. 

In vivo (255) 

 5 mL/kg mTOR, IL-1β Activated mitophagy and inhibited inflammation. In vivo (256) 

 10 mg/kg KCC2, BDNF, p-
ERK 

Decreased brain edema, neurological deficits and improved 
cortical neuronal apoptosis. 

In vivo (257) 

 5, 20 

mg/kg 

IL-10, TNF-α, IL-

1ß, IL-6  

Increased anti-inflammatory effect. In vivo (258) 

 2 mg - Improved sleep quality. Human  (259) 

 20 mg/kg p-NF-κB, p-AMPK, 
p-CREB 

Improved energy depletion and protected against brain injury. In vivo (260) 

 10 mg/kg PGC-1α, Bax, Drp1 Decreased mitochondrial fission, oxidative damage,  brain 

edema and improved mitochondrial fusion 

In vivo (261) 

 10 mg/kg Ferritin H Inhibited neuronal ferroptosis. In vivo (262) 

 15 mg/kg SOD, MDA,  Enhanced cerebral blood flow, the neuron regeneration in the 

cortex and antioxidant as well as anti-apoptotic effects. 

In vivo (263) 

 10 mg/kg ERK1/2, JNK1/2, 

p38MAPK, 
caspase-3, Bcl-2, 

Bax 

Ameliorated exploratory and locomotor activities, neuronal 

apoptosis and enhanced neuron numbers.  

In vivo (264) 

 - - Promoted cognitive function and inhibited astrocyte 

reactivation. 

In vivo (265) 
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 10 mg/kg circPtpn14, miR-
351-5p, 5-LOX 

Reduced ER stress and ferroptotic impacts. In vivo, 
in vitro 

(266) 

 10 mg/kg PKA/CREB Reversed TBI-mediated anxiety-like behavior, reduced 

neuronal apoptosis and the number of activated astrocytes and 

in the amygdala mediated by TBI. 

In vivo (267) 

 10 mg/kg HO-1/CREB Decreased TBI-mediated enhanced immobility time in the 

force swim test, reduced time spent sniffing the novel rat in 3-
chambered social test. 

In vivo (268) 

 10 mg/kg - Protected synaptic function. In vivo (269) 

Parkinson's 

disease 

10, 20, 30 

mg/kg 

GSH Protective effect against nigral dopamine loss and replenished 

the striatal dopamine loss and increased 

antioxidant effect. 

In vivo (270) 

 20 mg/kg Tyrosine 

hydroxylase 

Improved motor function and inhibited the striatal 

degeneration.  

In vivo (271) 

 4 mM hLRRK2 Ameliorated long-term memory deficits and modulated 

calcium channel. 

In vivo, 

in vitro 

(272) 

 10 mg hs-CRP, PPAR-γ, 

TAC, GSH, TNF-α  

Decreased the Unified Parkinson's disease rating scale and 

increased antioxidant and anti-inflammatory effects. 

Human (273) 

 25 mg BMAL1 Alteration in levels of the clock genes. Human (274) 

 10 mg/kg NLRP3 Prevented neurotoxicity, improved motor dysfunction, 

decreased microglial activation and increased anti-
inflammatory effect. 

In vivo, 

in vitro 

(275) 

 25 mg Complex I, CAT, 

carbonyl groups 

Restored respiratory control ratio and increase 

antioxidant effect. 

Human (276) 

 20 mg/kg 
50 μM 

RORα  Enhanced anti-inflammatory M2-like phenotype in the 
microglia. 

In vivo, 
in vitro 

(195) 

 - HSP70, Bax, Bcl2, 

caspase-3, HSF1 

Increased antioxidant and anti-apoptotic effects. In vitro (277) 

 20 mg/kg Caspase-3, GSH Enhanced the number of neurons in striatum and in substantia 
nigra and increased  antioxidant effect. 

In vivo (278) 

Alzheimer's 

disease 

10 mg/kg Caspase-3 Reduced proteinopathy, cognitive decline, restored the 

autophagy flux, increased antioxidant and anti-inflammatory 

effects, prevented.  

In vivo (279) 

 0.2, 0.5, 1 

μM 

DAPK1, Pin1 Reduced tau phosphorylation and accumulation, 

promoted microtubule assembly and neurite outgrowth. 

In vitro (280) 

 30 mg/kg VEGF Improved learning, memory and microvessel abnormality in 

the hippocampus and cerebral cortex.  

In vivo (281) 

 80 mg/kg Creb1, Bdnf  Ameliorated spatial memory.  In vivo (282) 

 10 mg/kg miR-504-3p, 

p39/CDK5 

Decreased neurofibrillary tangles and neuronal loss.  In vivo (283) 

 10 μM Caspase-1, 

NLRP3, IL-18, 
Parkin, p62, TFEB, 

IL-1β 

Promoted mitophagy. In vitro (284) 

 10 mg/kg Mcoln1 Attenuated Aβ pathology, restored mitophagy, improved 

cognition. 

In vivo (285) 

 - IRP2, LRP1, IDE Inhibited metal ion dyshomeostasis, oxidative stress, 

neuroinflammation, γ-secretase, tau hyperphosphorylation. 

In vivo (286) 

 10 μM Ca2+, caspase-3, 

ROS 

Increased antioxidant and anti-apoptotic effects by TRPA1 

channels. 

In vitro (287) 

 0.04 

mg/kg 

- Slowed down an enhancement in anxiety and deterioration of 

reference memory. 

In vivo (288) 

Spinal cord 

injury 

12.5 

mg/kg 

PI3K/AKT/mTOR Reduced apoptosis, enhanced autophagy and locomotor 

function recovery.  

In vivo (289) 

 50 mg/kg TNF-α, IL-6, IL-1β Increased anti-inflammatory effect. In vivo (196) 

 10 mg/kg Monocyte 
chemotactic protein 

1 

Improved intestinal integrity and locomotor performance in 
antibiotic-treated mice. 

In vivo (290) 

 12.5 
mg/kg 

NLRP3 Attenuated apoptosis, alleviated SCI through decreasing 
spinal cord water content. 

In vivo (291) 

 12.5 

mg/kg 

40 µM 

Wnt/β-catenin, 

caspase-3, Bcl-2, 

Bax  

Inhibited neural cell apoptosis and promoted locomotor 

recovery.  

In vivo, 

in vitro 

(292) 
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 50 mg/kg - Enhanced spinal cord blood flow as well as oxygen saturation. In vivo (293) 

 10 mg/kg IL-1β Increased anti-inflammatory effect. In vivo (294) 

 10 mg/kg Nissl bodies Improved permeability of blood-spinal cord barrier, rescued 
blood vessels. 

In vivo (295) 

 30 mg/kg NF-κB, iNOS Increased anti-inflammatory effect. In vivo (296) 

 10 mg/kg MDA, GSH, MPO, 

GSSG, occludin, 
ZO-1 

Enhanced the decreased blood flow and reduced SCI-

mediated permeability of capillaries, as well as  
antioxidant effect. 

In vivo (297) 

 30 mg/kg 
60 μM 

MDA, SOD, GPx, 
NLRP3, Nrf2/ARE 

Increased antioxidant and anti-inflammatory effect. In vivo, 
in vitro 

(298) 

 15 mg/kg PI3K-AKT1 Synergistic effect with half-dose methylprednisolone to 

improve acute SCI. 

In vivo (299) 

 10 mg/kg SIRT1/AMPK, 

Beclin-1 

Activated autophagy and inhibited apoptosis.  In vivo (300) 

 10 mg/kg Bax, GFAP, 
caspase-3, Bcl-2, 

IL-1β, iNOS, TNF-α 

Attenuated astrogliosis and microgliosis and improved 
anti-inflammatory effect 

 (301) 

 

10. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

     Neurodegenerative diseases cause an enormous financial burden for health care systems 

over the world. Although there have been notable advances in the development of effective 

therapies for these devastating disorders, mortality rate of them are still considerably high. This 

makes researchers manage to find alternatives and/or complementary treatments for 

neurodegenerative diseases. As discussed herein, melatonin has numerous well-documented 

neuroprotective effects; these include anti-oxidant, anti-inflammatory and anti-apoptotic 

activities. Furthermore, melatonin has recently been shown as a promising agent for nerve 

regeneration, and its combination with stem cell therapy is a promising therapeutic method for 

the treatment of neurodegenerative diseases. With the information at hand, the authors urge 

further experimental and especially clinical studies to clarify the utility of melatonin and its 

effectiveness and safety for neurologically-compromised patients.  
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