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ABSTRACT 

 

     Redox homeostasis and redox signaling are constituents of preservation of a normal 

physiological state. Whereas the equilibrium between oxidants and nucleophiles is conserved 

in redox homeostasis, oxidative stress promotes the formation of a radically altered redox state. 

It is known that modification of circadian clock may lead to severe alteration in redox balance. 

Melatonin [N-acetyl-5-methoxytryptamine, (MLT)] regulates numerous physiological 

functions including circadian rhythm, sleep-wake cycle, gonadal activity, redox homeostasis, 

neuroprotection, immune-modulation, and anticancer activity in organisms. Insufficient MLT 

production is closely related to development of aging process, tumorigenesis, visceral 

adiposity, neurodegenerative disorders, etc. Reactive oxygen species (ROS) are not 

intrinsically harmful or beneficial in cellular redox metabolism. Redox homeostasis is an 

integrative status for both of the hormetic response to ROS overproduction and subsequent 

redox signaling. MLT and its derivatives are traditionally classified as hormone-like 

substances. Their redox sensitive regulatory activity and direct interaction with intracellular 

ROS serve as second messenger in cell signaling. This review involves the role of redox 

homeostasis in the pathogenesis of age-related disorders and its relationship with MLT, 

therefore, targeting the circadian rhythm may propose new therapeutic approach for these 

disorders. 

 

Key words: redox homeostasis, melatonin, oxidative stress, aging, neurodegenerative diseases, 

autophagy 

 

1. INTRODUCTION 

 

     Cells preserve a stable cytosolic redox state to uphold both the oxidative bioenergetic 

reactions and the reductive anabolic progressions that underlie biological systems. This process 
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promotes redox signaling and avoids oxidative damage to cellular macromolecules. Redox 

homeostasis is a crucial and active process that confirms the equilibrium between reducing and 

oxidizing reactions within cells and controls a variety of biological reactions and procedures 

(1).  

Metabolism, redox homeostasis, circadian rhythm, and nutrition are closely related to aging. 

Mitochondria plays an essential role in redox homeostasis, circadian rhythm and aging (2). 

Mitochondria as the energy producing organelles, take place in upholding cellular homeostasis. 

Accumulating evidence has shown that the mitochondrion is a suitable target to combat the 

oxidative stress (OS) (3). Mitochondria hold their individual genome with an adjusted genetic 

code. It is proposed that transcription of some mitochondrial genes could be responsible for the 

redox potential of the mitochondrial membrane. The impacts of mitochondria on 

neurodegenerative and neuromuscular disorders including modifications in both nuclear 

(nDNA) and mitochondrial (mtDNA) DNA have been demonstrated. Metabolic disorders 

including diabetes, cardiovascular and neurodegenerative diseases as well as obesity and aging 

may implicate an exceedingly multifaceted breakdown in physiological systems, with the 

syndrome becoming determined if the injury cannot be restored (4).  

     The suprachiasmatic nucleus (SCN) synchronizes the biological circadian rhythms, 

including sleep and wakefulness, temperature, nutrition, neuroendocrine and autonomic 

effects, with the 24 h cycle based on the environmental light/dark cycle (5).  Melatonin [N-

acetyl-5-methoxytryptamine, (MLT)] is a chief biological sleep regulator in humans. A neural 

signal generated from the SCN prompts the production of MLT at night in the pineal gland. 

Besides the pineal gland, many organs and tissues have the ability to produce MLT (6). As a 

potent antioxidant melatonin displays its advantageous properties against OS-based 

macromolecular injury, counting those in which mitochondrial action is affected (7). 

Accumulating evidence reveals that MLT has significant roles in many metabolic functions as 

an anti-oxidant, anti-inflammatory and conceivably as an epigenetic regulator. The actions of 

MLT are primarily mediated by G-protein coupled MT1 and MT2 receptors; however, several 

intracellular protein and nuclear receptors also modulate these activities (8).  

     MLT exhibits pleiotropic activities on mitochondria. Mitochondria are the main source of 

free radical production in the cells and are associated with aging progression. Mitochondria 

play a crucial role in apoptosis. MLT's antioxidant capability is established not only on direct 

radical scavenging but also with various other means (9). Furthermore, the mechanisms by 

which MLT and its metabolites defend against oxidants and OS involve stimulation of the 

expression of antioxidant enzymes, reduction of the triggering pro-oxidant enzymes, and 

preservation of mitochondrial homeostasis (10). The suitable pharmacokinetics of melatonin 

also favor its antioxidant ability. For example, MLT is rapidly absorbed after its oral 

administration and go through first-pass hepatic metabolism between 20 min and 2 h, then 

levels continue for up to 1.5 h (11).  

     The role of MLT in the management of the circadian rhythm has led to investigation of 

MLT as a therapeutic agent of many disorders, specifically neurodegenerative and 

cardiovascular diseases.  It regulates various physiological functions, including sleep and 

circadian rhythm, neuro and cardiovascular activities, acting as powerful antioxidant and 

protecting tissues from lipid peroxidation, inflammation, reducing tumor growth, inducing 

apoptosis, and enhancing mitochondrial activity (12). Recently, MLT is found to participate in 

immunomodulatory, antiangiogenic, antiaging and antioxidant activities (13). Insufficient 

levels of MLT could escalate the possibility of neurodegeneration, aging, immunoregulation 

disorder, and senescence. 

     Immunomodulatory activities of MLT have been extensively studied (14) with the 

observations either pro or anti-inflammatory effects depending on conditions (15). Under the 

regular and immunosuppressed conditions, MLT exhibits immune-enhancing properties. It also 
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suppresses inflammatory reactions via non-immunological activities, such as antioxidative 

activity and mitochondrial functional preservation, in which melatonin promotes antioxidative 

process as well as decline ROS generation including NO formation (16, 17). The oxidation and 

inflammation have a strong connection, as the high level of OS prompts an inflammatory 

reaction, and ROS are the main risk factors of inflammation (18). MLT production declines 

with the age and the accelerated aging is associates with the MLT insufficiency (19). In fact, 

the relationship between MLT and aging is so strong that both extrapineal and pineal MLT are 

currently considered the useful biomarkers of the aging rate for organisms (20).  

     Redox interactions maintain the parameters of varied biological actions, involving 

metabolism, cell death, differentiation and development, immune responses, circadian rhythm, 

etc. This review on MLT and redox homeostasis summarized some of the most current 

developments as to how redox homeostasis is maintained, and what roles of MLT play in this 

process. The relationship between MLT and OS that causing aging and neurodegenerative 

diseases, autophagy, aging, and MLT derivatives as antioxidant in aging and neurodegenerative 

disorders are also discussed. 

 

2. CELLULAR REDOX HOMEOSTASIS, REACTIVE OXYGEN SPECIES  

 

     During the evolution of the photosynthetic microorganisms about 2.4 billion years ago, 

reactive oxygen species (ROS) appeared as unexpected byproducts of aerobic organisms (21). 

The gradual accumulation of molecular oxygen into the reductive atmosphere promotes the 

generation of ROS (22). Enrichment of molecular oxygen to Earth's ancient atmosphere causes 

significant evolutionary adaptations. A wide group of electron acceptor-molecules play crucial 

roles in energy-yielding metabolic pathways. Enzymatic reduction of O2 yielded a several-fold 

increase in energy production, enabling evolution of multi-cellular organisms. More than half 

a century ago, Argentinian physiologist, Rebeca Gerschman and her co-workers hypothesized 

that free radicals are detrimental and labile products associated with oxygen poisoning (23). 

Each oxygen atom has two lone pair electrons in its outer obit, whereas molecular oxygen has 

four lone pair electrons. Stable form of molecular oxygen is found in triplet state. Triplet 

dioxygen has one full σ bond plus two π half-bonds. Triplet oxygen (3O2) can be defined as a 

form of "ground state." The ground state refers to the situation that the outer valence obit 

electrons are in their lowest energy configuration. Triplet state is the most stable form of 

oxygen molecule and able to excite to be a reactive singlet oxygen (1O2) form by spin inversion.  

Singlet oxygen has one full σ and π bonds. 

     The electron transport chain in mitochondria ensures a safeguard tetravalent reduction of 

molecular oxygen to produce water. The univalent reduction of molecular oxygen due to 

electron leak forms ROS (24). In aging cells, impaired electron transfer chain activity causes 

higher rates of electron leakage. Higher ROS levels may lead to the overaction of redox 

signaling pathways and this overaction promotes inflammation, cancer, cell death, and the 

accelerated aging phenotype (25). MLT alleviates the mitochondrial electron leakage and acts 

as an electron rich antioxidant to scavenge 1O2, O2∙
-, O2

2-, and OH∙ radicals with non-equimolar 

reactions (26).  

     The cellular redox homeostasis depends on fine-tuned balance between the formation and 

the removal of ROS, which regulates many physiological processes by mediating signaling 

pathways and facilitating the activation of redox-sensitive proteins and enzymes. However, 

gradual accumulation of oxidative products interferes with redox signaling events, which can 

damage cellular signaling pathways and subcellular integrity, and may eventually cause 

cellular aging and death (27). Redoxtasis depends on the sustainability of a delicate balance 

between electron rich and poor functional groups for a healthy physiological steady state in 

organisms. Electrophiles and nucleophile groups are not intrinsically harmful or protective for 
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cell survival.  Redoxtasis is an essential feature of both the ROS-related response to challenges 

and subsequent feedback. While the balance between electron rich and poor species is ensured 

with well-tuned redoxtasis, variations in ROS formation rate induces the establishment of a 

new radically altered redox steady state (28). Physiological level of ROS formation may induce 

hormesis-related redox signaling mechanisms, whereas higher levels induce senescence or 

programmed cell death. The indispensable role of ROS in cell survival is closely related to the 

essential role of these labile molecules in cell signaling. Hormesis can be defined as ROS-

induced adaptive response to the effects of a variety of low level of oxidant products that render 

target cells to induce resistance to higher amplitude of ROS (29). As the redox shift is rapidly 

changed by feedback reactions, redoxtasis is ensured by continuous signaling for production 

and removal of electrophiles and nucleophile groups. 

     MLT and its derivatives have redox modulatory effects on ROS and reactive nitrogen 

species (RNS) (30). MLT-induced redox regulation may be accomplished with direct ROS 

scavenging, enzymatic and non-enzymatic antioxidant systems (31). Exogenous non-

enzymatic antioxidants are supplied nutritionally such as vitamin A, E, C xanthophylls, 

polyphenols, and carotenoids (32). Whilst vitamin C acts as hydrophilic antioxidant, others 

such as vitamin A, E, polyphenols and carotenoids active in the hydrophobic environment (33). 

The direct antioxidant effects of MLT depend on its own electron-rich aromatic indole ring. 

Indole ring makes it a potent electron donor that can significantly reduce free radicals (34). 

Mechanistically, MLT-dependent prooxidant activity may increase ROS production rate 

through its interaction with calmodulin or interaction with mitochondrial complex III under 

certain conditions (35). Since MLT, its metabolites and synthetic analogs exhibit conditional 

prooxidant properties, it can be referred as multi-faceted compounds (35, 36).  Although the 

vast majority of studies proved the antioxidant capacity of MLT and its derivatives, some in 

vitro studies found that MLT promoted the generation of ROS at pharmacological 

concentrations (μM to mM range); thus, MLT may function as a conditional pro-oxidant. 

     MLT levels decline gradually over the lifespan and this may reduce sleep efficacy, 

accelerate aging process and disrupt many circadian rhythms. MLT exhibits 

immunomodulatory properties, and a remodeling of immune system function is an integral part 

of aging. Finally, because MLT is a potent free radical scavenger, its deficiency may result in 

reduced antioxidant protection in the aging (37).   

 

3. MELATONIN AND OXIDATIVE STRESS 

 

     Evidence shows that neurodegenerative disorders are associated with excessive levels of 

OS biomarkers and reduced levels of antioxidant defense in the brain (38, 39). OS damage 

DNA, lipids and proteins as a result of an imbalance between oxidants and antioxidants (40, 

41). Protein oxidation triggers inflammatory signal pathways to induce tissue inflammation 

(42) and resultant diseases including cancer, rheumatoid arthritis, cardiovascular, 

neurodegenerative and autoimmune diseases (43). Use of molecules with antioxidant activity 

such as MLT might protect against these OS-related pathologies (44-47). Moreover, under OS 

situations, many genes of endogenous antioxidant will be up regulated by  MLT (49).  

     MLT shows indirect antioxidant activity by inducing antioxidant enzymes (SOD, GSH-Px, 

CAT and etc.) (50-52), stimulating glutathione synthesis (53), and increasing the efficiency of 

other antioxidants with synergistic effects (54). Therefore, understanding the antioxidant 

potential of MLT via different mechanisms is very valuable in order to use of this molecule to 

protect the organism against OS. The effects of MLT protecting against OS-associated 

disorders has been well documented (55, 56). Furthermore, several of its favorable activities 

on human health are often recognized (57, 58).  Brain is exclusively vulnerable to OS. Evidence 

has shown the favorable effects of MLT to restrict ischemia-reperfusion damages in the central 
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nervous system (59, 60). MLT also able to defend other organs from OS-associated disorders 

including heart, kidneys, lungs, stomach, skin, and liver (61-63).  

     MLT and its metabolites together serve as the effective and competent defense line to 

defense against OS via an extensive diversity of mechanisms including electron transfer, 

hydrogen transfer, metal chelation, and mending pharmacological targets. Nevertheless, what 

appears to be exclusive to the MLT is its unique activities.  MLT and its metabolites are 

metabolically linked, most of them exist in organisms (64). Thus, the defense of MLT against 

OS is obviously due to the cascade antioxidant reaction of melatonin with its metabolites. MLT 

and its metabolites are quite extraordinary in this respect, presenting multipurpose and unique 

antioxidant defense against OS.  

 

4. MELATONIN IN NEUROINFLAMMATION: AGING AND 

NEURODEGENERATIVE DISEASES 

 

     Neuroinflammation is the result of the excess immune response in central nervous system 

that causes to death of neurons and damage of brain tissue. Microglias in brain tissue 

phagocytose the damaged cells and release pro-inflammatory cytokines. In this process, ROS 

can be formed as the byproducts. In aging and neurodegenerative diseases, dysfunction of 

microglias and excess of ROS formation cause more neuronal damage and increase in pro-

inflammatory cytokines which lead to exaggerated neuroinflammation and neuronal tissue 

impairment (65). During aging and in neurodegenerative disorders, functions of brain decrease, 

dementia and cognitive disorders appear. OS is considered to be responsible for age-associated 

neurodegenerative diseases (66). During cellular respiration, oxygen is delivered to the cells 

and it is reduced to water through the complexes exist in the electron transport chain (ETC) in 

mitochondria. In the processes of aging and neurodegenerative diseases the ETC in the 

neuronal cells is inhibited with excessive amounts of ROS formation which damage 

mitochondria (67). Free radical mediated mitochondrial dysfunction and neuroinflammation 

are the pathologic features of aging and neurodegeneration. When ROS trigger oxidative 

damage in neurons, mitochondrial DNA is injured with the decreased mitochondrial membrane 

potential, therefore, the cyclic guanosine monophosphate-adenosine monophosphate synthase 

(cGAS) pathway and caspase-1 are activated. As a result, a large quantity of pro-inflammatory 

cytokines are released to disturb the functions of normal neurons, finally lead to neuronal cell 

death (68). In addition, aging and neurodegenerative diseases are also accompanied with 

diminished MTL production. This makes neurons be more vulnerable to further aggregate the 

age-related neurodegenerative diseases including Alzhimer’s Disease (AD), Parkinson’s 

disease (PD) and multiple sclerosis (MS) (69, 70). MLT was reported to be a neuroprotective 

molecule via its direct/indirect antioxidant activities to maintain mitochondrial homeostasis in 

aging and neurodegenerative disorders (35, 71, 72). In an in vivo study, the long-term 

administration of MLT in aged animals significantly decreased OS and improved 

mitochondrial function and ATP production (73, 74) indicating  that MLT deficiency increases 

neurodegeneration and aging due to  the elevated oxidative damage in brains in arylalkylamine 

N-acetyltranferase (AANAT) knocked out mice. On other hand,  MLT administration blocked 

the cGAS pathway, caspase-1 activation and decreased pro-inflammatory cytokines secretion 

in these mice. In another study, MLT administration to rats which received neurotoxin and 

microglia activating amyloid-β significantly decreased their pro-inflammatory cytokine levels 

(75). These findings indicate that MLT is a potent candidate to prevent the nervous system 

damage against the free radical attacks and improve mitochondrial function via its antioxidant 

effect. Thus, melatonin can effectively ameliorate aging associated neurodegenerative diseases.  

     In addition to neurodegenerative diseases the antioxidant capacity of melatonin on OS 

related skin diseases has drawn a great attention of scientists. MLT and its metabolites store in 
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the epidermis, representing the local MLT production and metabolism. Powerful defensive 

activity of MLT and its metabolites against solar UV skin injury are largely facilitated via its 

direct radical scavenging and upregulation of the gene expression of antioxidative enzymes 

(76, 77).  These activities of MLT and its metabolites may majorly occur at the mitochondrial 

level (78, 79). Evidence supports an association between declines in mitochondrial activity the 

aging process (80). It was observed that chronic UVR exposure is connected to photo aging 

and photo-cancer of skin due to the photo-induced overproduction of ROS, which attack the 

nuclear and mitochondrial DNA (81). MLT and its metabolites in the skin involve in 

photoprotection, anticancer, wound healing, inhibition of pigmentation, regulation of hair 

growth, anti-inflammatory action on dermatoses and regulation of skin temperature (82) as well 

as the regulation of skin functions (83,  84). To analyze the relationship between mitochondrial 

activity and melanin in melanoma cell lines, Bilska et al. (85) observed a certain influence of 

MLT, AFMK, 6(OH)MLT, 5-MLT and serotonin on mitochondrial activity. Melatonin with its 

metabolites considerably reduced melanin content in epidermal melanocytes (86). 

     MLT exhibits anti-apoptotic (87) and anti-inflammatory (88) activities which may be 

mediated by either MLT membrane receptors or nuclear receptors (89, 90). MLT also displays 

the anti-proliferative activities in cell lines of MNT-1, Sk-Mel-1, Sk-Mel-23 or Sk-Mel-28 (91, 

92). Considering the good safety record of MLT and its metabolites, it is a suitable approach 

to use these molecules for treatments of melanoma alone or in combination with anticancer 

drugs to increase the efficiency of the therapy (85, 91). MLT, its metabolites and its receptors 

are present in skin referred as skin melatoninergic system (93). It is known that UVR reduced 

ATP synthesis from mitochondria (94), while MLT revised UVR-induced inhibition of ATP 

synthesis in skin. MLT’s capacity of defending oxidative damage and UVR-induced 

disturbances of ATP synthesis in epidermal keratinocytes was studied by Kleszczyński et al. 

(95). They observed that MLT had powerful antioxidative properties in UVR-induced 

oxidative stress in epidermal keratinocytes. Furthermore, MLT upregulates the expression of 

the antioxidative enzymes including γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-

1 (HO-1), and quinone dehydrogenase-1 (NQO1) via the Nrf2-ARE pathway. 

     A recent review by Reiter et al (96) discussed the potential mechanisms of melatonin on 

solid tumor inhibition, i.e., melatonin converts the tumor’s cytosolic aerobic glycolysis known 

as “Warburg effect” to mitochondrial oxidative metabolism. Mitochondrial oxidative 

phosphorylation is reliant on the nighttime increased of circulating MLT production (97) and 

the reduced level of nighttime MLT promote the tumor development. The authors suggested 

(96) that this main circadian alteration in tumor cells which show aerobic glycolysis could be 

related to the disrupted circadian MLT rhythm.  MLT directly or indirectly downregulates the 

expression of pyruvate dehydrogenase kinase (PDK) that plays a role on converting pyruvate 

to acetyl CoA in the mitochondria (98). If this is hold, it can explain the protective effects of 

melatonin on many disorders (99). MLT inhibits proliferation the metastatic activity and 

prompts apoptosis in cancer cells. The capacity of MLT to switch the cytosol glucose 

metabolism to the mitochondrial metabolism reduces resistance of tumor to conventional 

chemotherapeutics (100). MLT, as a mitochondria-targeted agent, able to suppresses PDK and 

motivates PDC (101) to reduce the Warburg effect. As a result, when MLT levels are low 

during the daytime, cancer cells, particularly the breast cancers are favorite of cytosolic aerobic 

glycolysis due to the less pyruvate to convert to acetyl CoA. The synthesis of MLT by 

mitochondria is dependable to the intact ETC (102), higher mitochondrial ATP production is 

usually associated to reduced ROS (103). MLT promptly stores in mitochondria after 

administration to promote mitochondrial progressions (104). Another interesting finding is that 

the insufficiency in SIRT3 in the mitochondria causes malignancy (105). MLT under normal 

conditions upregulates SIRT3 action (106). 
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     Serotonin, a precursor of MLT, also exhibits a variety of biological activities in mammalians 

mostly via G protein coupled receptors or ligand-gated ion channels (5HTR1–7R) (107). 

Solominski et al. (108), described a serotonin-NAS system in mammalian skin to play a role 

in neuroendocrine structure by modifying skin homeostasis. Serotonin and NAS are 

endogenously produced in the epidermal, dermal and adnexal sections of mammalian skin. 

NAS in serum and tissue is accessible as a substrate for synthesis of MLT in organs having 

HIOMT.  In skin, the local NAT1/2 converts the serotonin to NAS.  Then, NAS defend   skill 

cells against the UVB injury. 

     Interestingly, MLT can effectively treat SARS-CoV-2 infection (109). The main 

mechanisms are that melatonin switches glucose glycolysis to oxidative metabolism and 

upregulates es f hypoxia-inducible factor-1α(HIF-1α) and NF-ҝB pathway (110) to suppress 

COVID-19 septicemia (111, 112). There is a connection between the secreted phospholipase-

A2 and the severity of COVID-19 illness. Reduction of sPLA2-IIA concentration might be a 

significant approach to prevent multiple organ failure and death due the SARS-CoV-2 

infections (113). Activated sPLA2-IIA promotes inflammatory reaction and leads to tissues 

damage since it hydrolyzes fatty acids (114). By stopping cyclooxygenase activity, MLT 

reduces the severe inflammatory reaction induced by SARS-CoV-2 infection (115).  

     It is well documented that MLT and its metabolites or analogue compounds being able to 

act as free-radical scavengers and effective antioxidants. Studies also showed the significant 

roles of MLT and its derivatives in numerous physiological processes and therapeutic utilities 

including the regulation of circadian rhythm and immune functions. All evidence indicates that 

MLT is an valuable molecule in the prevention and/or treatment of wide spectrum of disorders 

(116).  

  

5. MELATONIN, MITOPHAGY AND AGING  

 

     Mitophagy is a primary regulatory mechanism for mitochondrial redox integrity and buffers 

the ROS overproduction. Upon oxidative injury, mitophagy limits the accumulation of 

dysfunctional mitochondria and alleviates the detrimental effects of redox state failure. A wide 

spectrum of diseases have been implicated to associated with dysregulation of mitophagy 

(117). Moderate levels of ROS specifically induce mitophagy to optimize the activity of ROS 

signaling cascades (118). MLT-mediated mitophagy has shown the promising potency to 

ameliorate mitochondrial dysfunctions (119). Reduced mitophagy is closely related to 

decreased longevity since dysfunctional mitochondria are considered as both the source and 

the target of ROS (120, 121). Impairments in mitophagy may result in diabetes, 

neurogenerative disorders, cardiovascular pathologies, and cancer.  

     Mitochondria is considered as a major pool of MLT due to the reasons that melatonin is 

synthesized in them and it also can be imported from cytosol via the oligopeptide transporters 

PEPT1/2. Intramitochondrial MLT effectively scavenges ROS, via its own electron donation 

capacity and other defensive strategies including its metabolites; these actions of MLT 

facilitate the maintenance of the redox homeostasis in the mitochondria (122). Mitophagy links 

number of a complex redox networks which are impacted by MLT. For example,  MLT reduces 

mitochondrial electron leak and ROS production, blocks mitochondrial permeability transition 

pore (MPTP) opening to preserve the mitochondrial membrane potential (Δψ) under 

unfavorable bioenergetic conditions and also activates the uncoupling proteins (UCPs) to 

adjust the Δψ in normal condition. Mitoprotective effects of MLT is not only restricted to its 

redox modulatory ability but also related to its signaling function to upregulate expression of 

antioxidant enzymes, stress responsive genes and inhibition of Cyt-c release. MLT activates 

heterotrimeric intermembrane space-located G proteins and inhibits stress-induced cytochrome 

C release (123).  The major pathways of MLT acts on mitophagy include:  
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     (i) Ubiquitin-dependent PINK1 (PTEN-induced kinase 1)/Parkin-related mitophagy. Upon 

the occurrence of mitochondrial dysfunction, the outer mitochondrial membrane-located 

protein PINK1 is responsible for Parkin-mediated ubiquitination of mitochondrial proteins. 

Autophagy receptors like NDP52, OPTN, and p62 involve ubiquitin-mediated degradation of 

mitochondria. The members of autophagy core complexes such as VPS34 and ULK1 initiate 

the formation of autophagosomal membrane which is originated from endoplasmic reticulum. 

MLT can induce PINK1 expression via the MT2/Akt/NF-κB pathway, which has a protective 

role against neuronal injury (124). MLT pretreatment increases both the expression of PINK1 

and Parkin in cardiomyocytes. MLT-induced mitophagy reduces the number of dysfunctional 

mitochondria, restores organelle morphology as well as mitochondrial bioenergetic and redox 

homeostasis (125). Disturbance of mitophagy to remove the dysfunctional mitochondria often 

results in cardiomyopathy. MLT enhances mitophagy, alleviates the accumulation of 

dysfunctional mitochondria and improves cardiac function (30). Dry eye disease is a common 

eye disorder in elderly population (126). It has been recently reported that MLT-loaded 

micelles inhibit ROS overproduction and apoptosis in human corneal epithelial cells and 

ameliorates hyperosmolarity-induced ocular surface damage via PINK1-mediated mitophagy. 

This intervention may represent an effective treatment for dry eye disease possibly through 

acting MLT-type 1 receptor (127). Mitochondrial dysfunction is an important underlying factor 

in neurogenerative diseases such as AD. It was recently reported that long-term oral MLT 

administration improves memory deficits with reduced amyloid accumulation, downregulation 

of the number of mitophagy vesicles, diminished expression of PINK1 and Parkin in transgenic 

mice. Various studies have reported mitochondrial dysfunction in PD animal models with gene 

knockout or knockdown procedures.  The expression of mitochondrial-related genes, including 

parkin, and PINK1 were found to be inhibited in these studies. Mutations in Parkin and PINK1 

genes are responsible for the development of dysfunctional mitochondrial phenotype and lead 

to the development of early-onset PD. Mutations in the E3 ubiquitin ligase Parkin and the 

protein kinase PINK1 are closely related to the development of autosomal-recessive juvenile 

Parkinsonism. All these mutations are considered as reasons of defective mitophagy (128).  It 

was shown that MLT restored the expression of PINK1 and Parkin in Parkinsonian Zebrafish 

embryos (129).  

     (ii) Ubiquitin-independent receptor-mediated mitophagy. This pathway needs the 

recruitment of soluble autophagy receptors such as NIX, BNIP3, and FUNDC1 to the 

mitochondrial membrane. The receptor proteins recruit LC3, which enables the engulfment of 

mitochondria by autophagosomes (121).  

     (iii) Alternative degradation pathways. Piecemeal mitophagy and mitochondrial-derived 

vesicle degradation are cellular pathways that mediate localized degradation of mitochondria 

(130).  

     There are several pathologies, syndromes, and physiological processes in which autophagy 

is involved. Further efforts are required to clarify the possible mitophagy-related role of MLT 

on the last two pathways. 

 

6. MELATONIN DERIVATIVES AS ANTIOXIDANT IN AGING AND 

NEURODEGENERATIVE DISEASES  

 

     It is widely accepted that ageing is the main risk factor for many neurodegenerative 

disorders, such as AD, PD, Huntington Disease (HD). Currently no effective drugs are 

available for the treatment of ageing-associated neurodegenerative diseases. In general, 

postmitotic cells, such as the brain, are particularly predispose to the ageing associated 

degeneration. Hallmarks of ageing are genomic instability, telomere attrition, epigenetic 

alterations, loss of proteostasis, mitochondrial dysfunction, cellular senescence, deregulated 
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nutrient sensing, stem cell exhaustion and altered intercellular communication associated with 

exposure to neurodegenerative disorders (131, 132).  MLT is a molecule with capacity to target 

all these aging hallmarks. Importantly, its derivatives seem to share the similar capacities with 

melatonin. This makes possible to discover the novel molecules derived from melatonin to 

function as antioxidant, neuroprotector and aging retarder. There are many properties of MLT 

as a molecule outstanding.  These include MLT’s very low toxicity (133), its ability to cross 

blood brain barrier with ease, partially soluble in water and highly soluble in non-polar aprotic 

solvents such as lipids (134), its metabolites which are capable of offering protection against 

OS. Therefore, MLT is an outstanding motif for minor alterations to developed novel molecules 

possibly with broader benefits (135).  

      For example, a new MLT derivative (MLTBS) (Figure 1) showed the same 

pharmacological effects as MLT. Compared with MLT, MLTBS has a benefit of decent water 

solubility, minor toxicity, and better safety observed in the in vitro and in vivo conditions (136).    

         

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Chemical formula of (a) melatonin, (b) sodium 4-(3-(2-acetamidoethyl)-5-methoxy-

1H-indol-1-yl) butane-1-sulfonate (MLTBS). 

 

     MLT and some related natural molecules also show antioxidant properties. Among these 

molecules the most significant ones are MLT’s metabolites N1-acetyl-5-methoxykynuramine 

(AMK), N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), cyclic 3-hydroxymelatonin 

(C3OHM), 5-methoxytryptamine (5MTA), and 6-hydroxymelatonin (6OHM) (Figure 2). 

C3OHM is a product of the MLT interaction with hydroxyl radical (96). AFMK is produced 

after C3OHM interacts with other free radicals. Then AMK is formed from the reaction 

between the radicals and AFMK (137). AFMK has inhibitory effect on lipid peroxidation and 

OS-induced neuronal damage (138). 6OHM is an inhibitor of quinolinic-acid induced 

neurotoxicity (139).  
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Fig. 2. Chemical formula of (a) N1 -acetyl-5-methoxykynuramine (AMK), (b) N1 -acetyl-

N2 -formyl-5-methoxykynuramine (AFMK) and (c) cyclic 3-hydroxymelatonin 

(c3OHM).  

     N-acetylserotonin (NAS) is an intermediate molecule that is formed from serotonin and has 

neuroprotective effect in neurological disorders (140). It was found that NAS has strong 

antioxidant properties (141). NAS is present in some parts of the brain (142). Naturally 

produced MLT derivatives and some precursors such as serotonin (5HT) (143), 5-

hydroxytryptophan (5HTP) and 5-methoxytryptamine (5MTA) (Figure 3) are versatile 

antioxidants. The serotonin system in human is very significant, particularly in neuronal 

conduction and neuromodulation. 5-HT shows strong antioxidant properties and reacts with a 

greater attraction to unsaturated lipids and able to interrupt the diffusion of free radicals (143).  

     There are indications associated the theory that chemical alterations to MLT’s structure 

leads to the development of new molecules with an extensive variety of anticipated activities. 

Besides, these compounds might have superior therapeutic benefits than MLT. 

 

 

                          

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Chemical formula of (a) N-acetylserotonin (NAS), (b) serotonin, (c) 5-

hydroxytryptophan (5HTP) and (d) 5-methoxytryptamine (5MTA). 

 

     Systematic rational researches for development of the novel MLT derivatives were 

performed using different strategies and computer-assisted procedures. Reina et al. (144) was 

synthesized new derivatives by addition of different simple functional groups such as -OH, -

NH2, -SH and -COOH to the MLT molecule. Results revealed that 5 MLT-derivatives have 

been recognized as scavengers of free radicals, by electron transfer and/or H transfer.  

    Antioxidant defense is a multifaceted procedure that includes diverse chemical and non-

chemical reactions. There are numerous features on the performance of the developed 

molecules. Inspired for the interesting properties of MLT, the design and synthesis of MLT-

like compounds is a rapidly developing research area (145, 146). The antioxidant properties of 

some MLT derivatives with a sulfhydryl group have better antioxidant activity than that of 

MLT (147). Moreover indole-based MLT hydrazine derivatives containing 2-phenylindole 

(148), indole-3-propionamides (149) and N-methylindole (150) derivatives were potent free 

radical scavengers observed in the in vitro experiments. Between the hydrazide-MLT 

derivatives, 5-chloroindole hydrazide were established to be very effective as antioxidant 

(151). Alterations in modification of the 5-methoxy and 3-acylaminoethyl side chain of MLT 
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have shown the encouraging aspect to make novel molecules with improved antioxidant 

capacity compared to MLT (152). Indole-based analogues of MLT such as indole amino acid 

derivatives have been synthesized and analyzed for antioxidant capacity. Their activity to 

scavenge DPPH (2,2- difenil-1-picrylhydrazyl) was parallel to that of MLT, while their 

effectiveness as inhibitors of lipid peroxidation was advanced (153). Additional research of 

other properties of the novel MLT analogues are still desirable from both experimental and 

theoretical methodologies. But it is likely that further research will assist to discover new 

molecules concerning antioxidant protection and possibly neuroprotection. 

 

7. CONCLUSION REMARKS  

 

     Age-associated neurodegenerative diseases are becoming a serious public health issue. OS 

and redox homeostasis play essential part in aging and neurodegenerative diseases. 

Antioxidants such as vitamin E, vitamin C, β carotene, and some flavonoids have limited 

success as effective prophylaxis or treatment remedy. Assumed the significance of OS in the 

pathogenesis of numerous diseases and aging, antioxidant should be suitable for treatment of 

these OS associated disorders. During aging the redox homeostasis is challenged since 

excessive OS with aging disturbs particularly the regulatory structures of nerve system, 

endocrine and immune response. MLT is universally presented molecule not only in the pineal 

gland but also in many organs and tissues (154). It is a potent endogenously produced 

antioxidant. MLT’s defense against OS exhibits cascade reaction, i.e., not only melatonin but 

also its metabolites possess antioxidant capacity (36, 155). Circadian rhythms are essential 

timers establishing the routine and physiology of organisms. They are associated with cellular 

redox regulation. Metabolism, redox homeostasis, circadian rhythms, and nutrition directly 

impact aging process. 

     MLT as antioxidant has the capacity preserves the redox homeostasis. Its mechanisms are 

multiple.  Melatonin can directly scavenge free radicals and indirectly upregulation of 

expression and activities of antioxidant enzymes and downregulation of the prooxidant 

enzymes (156). Nevertheless, the molecular mechanism underlying the precise act of MLT is 

not entirely understood. Aging is related with a substantial decrease in endogenous MLT 

synthesis, an increase of OS and other metabolic alterations (157). MLT is an effective 

defender of mitochondria due to its lipophilic properties that protects the mitochondrial inner 

membrane against OS (136). It also conserves mitochondrial activities by prompting mitofusin-

2 activity, the main controller of mitochondrial cellular metabolism (158). MLT preserves 

calcium homeostasis in cardiomyocytes by preventing OS-linked disorder of 

sarco/endoplasmic reticulum calcium ATPase (SERCA) and sodium-calcium exchanger 

(NCX) proteins (159). Long-term of MLT treatment benefits glucose homeostasis and reduces 

insulin resistance in animal studies. Antioxidant activity of MLT is adequate to improve insulin 

resistance via destruction of   Jun kinases/stress-activated protein kinases (JNK) stimulation 

and phosphoenolpyruvate carboxykinase (PEPCK) expression due to decreased OS, producing 

better glucose homeostasis and reestablished hepatic insulin signaling (160). MLT signaling is 

a key regulator of glucose homeostasis and energy metabolism (161). Obesity as a syndrome 

of disturbed lipid homeostasis is also the target of melatonin. MLT exhibits favorable 

properties in refining lipid metabolism and circadian rhythm homeostasis (162). MLT regulates 

iron homeostasis via prompting hepcidin expression in hepatocytes (163). It also has defensive 

roles on the activity of the exocrine pancreas, Ca2+ signaling and the mitochondrial integrity 

(164). Since MLT is synthesized in mitochondria, a close connection is expected between MLT 

and mitochondria (Figure 4) including  scavenging mitochondrial originated ROS, promoting  

uncoupling proteins (UCP) activity, reducing the mitochondrial permeability transition pore 

(mtPTP) opening, preventing mitochondrial dysfunction from oxidative damage by preserving 
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cardiolipin integrity, improving calcium handling, inhibiting mtDNA release and activation of 

cytosolic DNA-mediated inflammatory response in neurons (165-171). All these were 

illustrated in the Figure 4. The research on MLT activity in cellular homeostasis has produced 

inspiring information, which have led to investigators to share their knowledge concerning the 

beneficial effects of MLT in human health. Generally, MLT plays a vital role in the regulation 

of metabolism and redox homeostasis. Nevertheless, there remains necessity for additional 

convincing clinical research to clarify certain actions which MLT and its metabolites as well 

as the related receptors are responsible to the regulation of diverse metabolic procedures in 

organisms. Given that there are numerous activities of MLT, upcoming clinical studies 

employing MLT should be encouraged to use in the management of many diseases associated 

with OS. 

 

Fig. 4.  Summary of the potential effects of melatonin on mitochondria. 
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