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ABSTRACT  

 

   Global warming is predicted to reduce the yield of rice, which feeds more than half of the 

world’s population. A rise in temperature will inevitably hamper rice production by causing 

drought and flooding. Melatonin has the capacity to ameliorate such adverse effects. Here, we 

propose multiple genetic means of producing melatonin-enriched, high-yield rice variants to 

adapt upcoming global warming. 
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________________________________________________________________________ 

   Global warming has a negative effect on agricultural production (1). In 2014, the 

International Panel on Climate Change (IPCC) initially predicted a 1.5–2.0C increase in 

global temperature by the end of this century, but in 2017 this was reevaluated to a 5C 

increase (2). Rice yields are more vulnerable to the nighttime temperature changes than that 

in daytime (3). Ceccarelli et al. (4) have predicted that a temperature increase will reduce rice 

production up to 41% by the end of the 21st century and reduce maize production up to 50% 

by 2080. This prediction is linked to a report that yields of rice grain may decline by 10% for 

each 1C rise above growing-season’s normal temperature (5). Temperatures higher than the 

optimum decrease photosynthesis (6) and cause drought; thereby, reducing rice yield as well 

(7). A high temperature during the flowering and grain-ripening stages significantly decreases 

seed fertility and grain-filling rate, as well as rice yield (8). Worldwide, rice production is 

hampered by high temperature, drought, floods, pathogens, salt stress, and arsenic stress (9). 

Clearly, a means of overcoming the adverse effects of global warming on rice production is 

needed. 

   Globally, annual rice production is around 782 million tons and this grain contributes to 

the food supply of more than half of the world’s population (10). To maintain current rice 

production levels, efforts have focused on improving cultivation practices and breeding new 

rice variants that are more resistant to stresses caused by global warming. 

 Melatonin is an indoleamine with diverse physiological roles in animals and plants (11). 

Since its discovery in plants in 1995 (12, 13), approximately 800 papers on melatonin in 

plants have been published (14). Melatonin as a potent antioxidant can quench up to 10 

molecules of reactive oxygen species (ROS) and lacks prooxidant activity (15, 16). In fact, 
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melatonin protects plants from chemical stressors that generate ROS (17). These stressors 

include cadmium, lead, aluminum, copper, vanadium, methyl viologen, and herbicides. 

Exogenous application of melatonin or an increase in endogenous melatonin in transgenic 

plants enhances tolerance of plants to these stressors (18). With regard to arsenic 

accumulation in rice grain, melatonin confers arsenic stress tolerance by enhancing 

antioxidant activity in soybean (19) and tea plants and decreases the arsenic content of tea 

(20), suggesting that it blocks arsenic translocation from roots to aboveground tissues, as it 

also does for cadmium (21, 22). Melatonin also enhances tolerance to abiotic stresses that 

cause oxidative damage by directly scavenging toxic radicals and by elevating the activities 

of antioxidant enzymes via induction of the expression of signaling and defense genes (23, 

24). These abiotic stresses include drought, salinity, heat, cold, intense light, alkalinity, and 

acidity (25). Biotic stresses including bacteria, fungi, and viruses have also been attenuated 

by exogenous melatonin application and in melatonin-enriched transgenic plants (26, 27). 

   To generate melatonin-enriched transgenic rice plants, it needs to understand melatonin 

biosynthetic and catabolic pathways in plants. Melatonin synthesis begins with the 

conversion of tryptophan into tryptamine by tryptophan decarboxylase (TDC). In the rice 

genome, there are at least three TDC genes, of which TDC1 (AK069031) and TDC3 

(Os08g0140500) have 87% amino acid homology, compared to 47% and 48% homology to 

TDC2 (AK103253), respectively (28). The optimum TDC gene for melatonin production is 

TDC3. Tryptamine 5-hydroxylase (T5H) in rice catalyzes the conversion of tryptamine to 

serotonin. Therefore, ectopic overexpression of T5H in rice could increase melatonin levels 

(29). Serotonin N-acetyltransferase (SNAT) is responsible for N-acetylserotonin synthesis 

from serotonin. Two SNAT isogenes (SNAT1 and SNAT2) have been functionally 

characterized (24), but there are others in the rice genome (30). Ectopic overexpression of 

SNAT1 and SNAT2 increases melatonin in rice but the role of the rice ortholog of apple 

SNAT3 (AK109295) is unknown. Finally, N-acetylserotonin O-methyltransferase (ASMT) 

converts N-acetylserotonin into melatonin. A diverse array of O-methyltransferase enzymes 

shows ASMT activity, including caffeic acid O-methyltransferase (COMT) (24). The 

melatonin synthetic pathway is illustrated in Figure 1. 

   In an earlier study on rice, overexpression of three ASMT genes (ASMT1, ASMT2, 

ASMT3) increased melatonin content, albeit only slightly (31). By contrast, COMT-

overexpressing transgenic rice plants produce more melatonin than ASMT1–3-overexpressing 

plants (32). The putative rice ASMT4 (XM_015782901), which is orthologous to apple 

MzASMT9, localizes to chloroplasts (33) and has potential to enhance melatonin production 

(24). Overexpression of a novel ASMT5 gene (AK068864) in rice increases melatonin 

production twofold (34).  

   Several melatonin catabolic genes have been cloned, including melatonin 2-hydroxylase 

(M2H), melatonin 3-hydroxylase (M3H), and N-acetylserotonin deacetylase (ASDAC) (24). 

M2H catalyzes conversion of melatonin into 2-hydroxymmelatonin whereas M3H converts 

melatonin into cyclic 3-hydroxymelatonin. Interestingly, ASDAC catalyzes the conversion of 

N-acetylserotonin into serotonin (35). These genes can be manipulated by genome-editing 

technologies, such as the CRISPR-Cas system. ASDAC (AK072557) exists as a single copy 

in the rice genome, enabling the generation of ASDAC-knockout mutant rice by CRISPR-Cas. 

The rice ASDAC mutant has blocked the reverse way of melatonin synthesis from N-

acetylserotonin to serotonin, leading to melatonin accumulation. Rice possesses at least four 

copies of M2H (36) and at least three copies of M3H (37) with different Vmax values. There 

require stepwise mutant generations from quadruple to triple in M3H (m3h1/2/3/4) and M2H 

(m2h1/2/3) mutation to generate mutant rice with elevated melatonin synthesis. Melatonin 

production also can be increased using melatonin biosynthetic genes from other plants or 

animal species as well as by modifying melatonin biosynthesis, such as by overexpressing 
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COMT in chloroplasts (38) (Figure 1). 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Melatonin synthetic pathway and the enzymes which can be genetically 

manipulated to increase endogenous melatonin levels in rice. 

     The common abiotic stresses in rice plants including drought and flooding associated 

with global warming are highlighted in bold letters. Genes involved in melatonin biosynthesis 

and catabolism which can be used to increase the endogenous melatonin content of rice are 

marked as blue color. The bars indicate the block effect. The genetic modifications can be 

achieved by constitutively overexpressing melatonin biosynthetic genes under the control of a 

strong constitutive promoter, such as that of maize ubiquitin. Genes involved in melatonin 

catabolism (M2H, M3H) and the reverse pathway (ASDAC) can be knocked out by genome 

editing using the CRISPR-Cas system to increase the melatonin levels. TDC, tryptophan 

decarboxylase; T5H, tryptamine 5-hydroxylase; SNAT, serotonin N-acetyltransferase; ASMT, 

N-acetylserotonin O-methyltransferase; COMT, caffeic acid O-methyltransferase; ASDAC, 

N-acetylserotonin deacetylase; M2H, melatonin 2-hydroxylase; M3H, melatonin 3-

hydroxylase.   



 

Melatonin Research (Melatonin Res.)             http://www.melatonin-research.net 

Melatonin Res. 2021, Vol 4 (4) 501-506; doi: 10.32794/mr112500108               504                              

 

   In sumary, melatonin-enriched rice plants can be produced by overexpressing melatonin 

synthetic genes or knocking out melatonin catabolic genes. The most effective genes must be 

determined empirically to select transgenic rice plants with high melatonin contents but no 

growth inhibition or yield reduction. Melatonin-enriched rice not only has high yield but most 

importantly, be tolerant to climate change, such as global warming. 
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