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ABSTRACT 

     Chromium (Cr), a ubiquitous metal, has become a potent pollutant due to global 

industrialization, leading to pollution of air, water, and food that impacts human health. The 

most stable forms of Cr are Cr(III) and Cr(VI) (the major product of industrial activities). 

Cr(III) is a micronutrient essential for maintaining normal blood glucose and lipid profiles in 

our body but it can also form Cr (III)-DNA adducts. In addition, it directly produces reactive 

oxygen species (ROS) via Fenton and Haber-Weiss reactions; leading to tissue injuries. Cr (VI) 

has the capacity to generate Cr(V), Cr (IV), and Cr(III), respectively under suitable conditions. 

These intermediates also damage to biological macromolecules by interactions with several 

enzymatic and non-enzymatic antioxidants. For example, Cr(III) can make double DNA 

strands breaking to inhibit DNA replication, induce DNA oxidation, and DNA adducts 

formation. All of these lead to the development of malignancy. Melatonin, a potent radical 

scavenger as well as a metal chelator, effectively chelates Cr(VI) and prevents DNA oxidative 

damage. Melatonin can upregulate the gene expression of several antioxidant enzymes, and 

thereby, maintains cellular integrity from the oxidative stress. Thus, melatonin can be a prime 

molecule to protect against Cr(VI) induced cytotoxicity and genotoxicity. This review aims to 

highlight the potential benefits of melatonin on Cr(VI) induced oxidative stress and DNA 

damage. 
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___________________________________________________________________________ 

 

INTRODUCTION 

 

     For decades, huge quantities of pollutants have been emitted into the environments due to 

substantially global industrialization. Unlike most organic contaminants, metals bring more 

severe biohazards to organisms since they are non-biodegradable and can accumulate in the 

tissues of organisms via the food chain (1, 2).  There are various heavy metals present in nature, 

among them  Cr has a very narrow concentration margin between its beneficial and toxic effects 
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for organisms (3). It is an essential nutrient but it also acts as a potential carcinogen (4). Thus, 

Cr is referred as an “essential metal with potential for toxicity” (5).  

     Cr is the 21st most abundant element found in the earth’s crust usually as chromite (FeCr2O4) 

(a relatively insoluble soil mineral), at about 100 ppm (6, 7). Cr was first discovered by 

Vaquelin in 1797 from crocoite (PbCrO4). It has an atomic number of 24 and a high atomic 

weight of 52. It exists in several oxidation states ranging from -2 to +6. The trivalent (Cr-III), 

and hexavalent (Cr-VI) states are the stable forms of Cr (8). Cr(III) is an essential 

micronutrient; widely used as a dietary supplement. It is the most stable and biologically active 

form of chromium. Cr(III) not only potentiates the action of insulin but also improves glucose 

tolerance (9–12), by facilitating the binding of insulin with the receptor in the cell surface (13). 

Studies also reveal that the supplementation of Cr(III) to patients with heart diseases increases 

HDL but decreases the VLDL cholesterol levels(14–16). Thus, it is essential for carbohydrate 

and lipid metabolism(17, 18).  

     Cr(VI) is a highly toxic compound and is mostly used for industrial purposes including in 

metallurgy (67%), refractories (18%), and chemicals (15%) (19). [Cr(III) is also used for 

chemical manufacturing but in a lesser extent, compared to Cr(VI) (20)]. Cr(VI) is also 

naturally obtained from the chromite ore in the form of sodium chromate (Na2CrO4), sodium 

dichromate (Na2Cr2O7), and chromium oxide (CrO3). Other oxidized forms of Cr are also 

present in nature such as potassium chromate (K2CrO4), potassium dichromate (K2Cr2O7), 

chromic acid, etc. (21). The most common routes of Cr(VI) exposure include occupational as 

well as non-occupational exposure with ingestion of contaminated water and food (22). 

Environmental Cr contamination is the consequence of various anthropogenic processes; one 

of the major causes is the discharge of effluents from the tanneries and industries into water 

(23). The United States Environmental Protection Agency (USEPA) has identified Cr(VI) as 

one of 17 chemicals and one of the top 20 contaminants that need to be treated since it possesses 

a great threat to human health (24). It is well known that transition metals cause oxidative tissue 

damage (25). Cr is also a transition metal. Cr(VI) can deplete glutathione and protein-bound 

sulfhydryl groups (26) and generate a large number of reactive oxygen species (ROS) including 

hydroxyl radical (HO.), superoxide anion radical (O2
.-), or hydrogen peroxide (H2O2) through 

various mechanisms (Fenton and Haber–Weiss type reactions) (25, 27–29) and cause oxidative 

damage in cardiac (30), hepatic (31–33), renal tissues (32,34) as well as cause toxic hepatitis 

(35), immunotoxicity (36, 37), and genotoxicity (38–40).  

     Cr(VI) is also toxic to the plants. It stalls the various physiological processes in plants such 

as germination, photosynthesis, and water balance (41–43). It accumulates in various parts of 

plants (42, 44, 45) thereby, reducing the biomass, chlorophyll content, and relative water 

content of the plants and impedes the growth of roots, stems, and leaves (41). Cr(VI) causes 

overproduction of H2O2, and malondialdehyde (46, 47) and aggravates electrolytes leakage and 

mutagenesis in plants (42).  

     It appears that suitable antioxidants are essential to detoxify the Cr-induced oxidative 

damages in organisms. Among various potent antioxidants, melatonin seems the best choice 

for this purpose (48, 49). Melatonin (N-acetyl-5-methoxytryptamine) is primarily secreted 

from the pineal gland of vertebrates at night, also known as a sleep promoter (50–52). Recently, 

high levels of melatonin have been identified in the extrapineal tissues (Table 1). For example, 

the gastrointestinal tract generates 400 times higher concentrations of melatonin than that in 

the pineal gland (53, 54). The locally generated melatonin exerts its potential beneficial effects 

on those organs and tissues (Table 2). It is of notice that the metabolites of melatonin, N1-

acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5 methoxykynuramine 

(AMK), also exhibit the antioxidant capacity (55–57) to further intensify the melatonin’s 

activity as a potent antioxidant. In addition, melatonin can effectively chelate metal (58, 59) 

with high efficiency (60). At the level of molecular mechanisms, melatonin possesses 
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antiapoptotic activity (61, 62), modulates the activity of mitochondrial permeability transition 

pores and reduces mitochondrial depolarization (63), downregulates gene expressions of 

cyclooxygenase (COX) and inducible nitric oxide synthase (iNOS),  and inhibits the production 

of nitric oxide, prostanoids, leukotrienes (64, 65) with potent anti-inflammatory activity. 

     As to the plants, Cr(VI) can cause adverse effects on their growth (66–68) which can be 

prevented by melatonin to minimize the Cr(VI) uptake in all parts of the plant (roots, leaves, 

shoots) (69). Ayyaz et al.(70) have also reported that melatonin mitigates the toxic effects of 

Cr(VI) on the growth of canola by harmonizing photosynthesis and regulate electron transport 

flux to protect against oxidative damage. 

     Based on the evidence, we hypothesize that melatonin may protect against chromium-

induced oxidative stress and toxicity in organisms.  

Table 1. List of extrapineal melatonin sources. 

 

Extrapineal tissues and organs Biological fluids 

Brain, retina, lens, cochlea, harderian gland, 

airway epithelium, skin, gastrointestinal 

tract, liver, kidney, thyroid, pancreas, 

thymus, spleen, immune system cells, carotid 

body, endothelial cells, heart, skeletal 

muscle, placenta, testes, ovaries, cerebral 

cortex, and striatum. 

Cerebrospinal fluid, saliva, bile, synovial 

fluid, amniotic fluid, and breast milk. 

 

Table 2. Functions of extrapineal melatonin. 

Extrapineal tissues Functions 

Retina • To protect the outer segment membrane of the 

photoreceptor against photo-oxidative stress (71). 

Skin  • To regulate the redox status of cells and it also involves 

melanogenesis(54). 

Gastrointestinal tract • To regulate water content in the gut (72). 

• To facilitate transmembrane transport of ions and 

electrolytes (73) 

Reproductive organ • To function as autocrine, and paracrine in the regulation of 

reproductive physiology and to improve the quality of the 

egg and sperm(54). 

• To act as the antioxidant and free radical scavenger to 

protect ovarian follicles during follicular maturation (74, 

75). 

• To bind to melatonin receptors in the ovary maintaining sex 

steroid secretion at different phases of ovarian follicular 

maturation and reducing polycystic ovarian syndrome (74). 

 

2. ROLE OF Cr IN PATHOGENESIS OF OXIDATIVE STRESS 

 

     To know the biological effects of Cr, it is important to distinguish its valence states. Cr(III) 

is 10-100 times less toxic than that of Cr(VI) for organisms (4) because Cr(III) is less soluble 

and poorly absorbed by the gastrointestinal tract (GI tract) (13, 76). However, long-term 

exposure to Cr(III) can cause genotoxicity (77–80). The reason is that when Cr(III) enters into 
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the nucleus it can react with DNA to produce mutagenic or clastogenic effects (81, 82). In 

contrast, Cr(VI) is highly soluble and a powerful oxidizing agent (83). The cytotoxic effect of 

Cr(VI) is related to its carrier-mediated transport across the plasma membrane, followed by its 

intracellular reduction to Cr(III) (84), and this nature of Cr(VI) makes it very toxic for 

organisms in comparison to other species of Cr. According to the International Agency for 

Research on Cancer (IARC), Cr(VI) is a Group I carcinogen that triggers cancer by multiple 

complex mechanisms (85). 

2.1. Permeability of Cr(VI) into the cell membrane. 

     In the presence of O2, Cr(VI) can form two predominant species: 1. Chromate (CrO4
2-) (in 

the basic condition) and 2. Dichromate (Cr2O7
2-) (in the acidic condition). Cr(VI) in the form 

of tetrahedral divalent (CrO4
2-) (anion, can cross the plasma membrane easily through chloride 

phosphate (86) and sulfate anionic carrier (87, 88), against the concentration gradient of the 

divalent anion(2-). These processes do not involve in active transports. After absorption through 

the GI tract, Cr(VI) is uptake by cells in different tissues and organs (89). Then the Cr(VI) can 

be reduced to its most stable intermediate intracellularly. The extracellular reduction of Cr(VI) 

is also present primarily in saliva, followed by gastric juice of the stomach (90) and in the 

intestine by bacteria (82). Once Cr(VI) is reduced to its stable state of Cr (III), it is generally 

retained in the place where it is produced, as it is impermeable to the membrane (79, 90). 

However, a small amount of extracellular Cr(III) can enter cell majorly by phagocytosis. The 

maximum toxic effect of Cr(III) usually occurs at the nuclei or mitochondria (91). 

2.2. Intracellular/extracellular reduction of Cr(VI).  

     Cr(VI) can be reduced by the intracellular antioxidants (92). The reduction of Cr(VI) by 

enzymatic and non-enzymatic antioxidants lowers the intracellular Cr(VI) level and this leads 

to constant entry of the extracellular Cr(VI) into the cell to maintain its balance (93). Several 

antioxidants involve in Cr(VI) reduction. These include glutathione (GSH), ascorbate (Asc), 

thioredoxin (94, 95), cysteine (96, 97), etc., whereas, some enzymes also involve its reduction, 

such as mitochondrial electron transport complexes, microsomal cytochrome P450/NADPH-

cytochrome P450 reductase (98, 99), glutathione reductase (GR), ferredoxin, NADP+ 

oxidoreductase (100, 101), etc. All of these can reduce chromate effectively at pH 7.4 (90). 

Both mitochondria and microsomes have the capacity to reduce Cr(VI). NADPH-dependent 

flavoenzymes possess chromate-reductase activity. On contrary, enzymes that do not contain 

flavoproteins cannot efficiently react with chromates, such as isocitrate dehydrogenase 

(ICDH), malate dehydrogenase (MDH), and glutamate dehydrogenase (GDH) (99). As a 

transition metal, chromium (i) can generate ROS by indirectly oxidizing flavin cofactors to 

adopt a semiquinone radical (UQ·_) state, and (ii)  interacts either with oxygen (under the action 

of cytochrome P450) or with peroxides (under the actions of myoglobin, hemoglobin, 

cyclooxygenase, peroxidase, catalase) or (iii)  transfers an oxen from the oxygen or peroxide 

to the metal ion (102). Considering the role of GSH and Asc as the classic antioxidants, it is 

not yet clear whether they exhibit protective effects against Cr(VI) induced oxidative stress 

since they reduce it to potentiate the oxidative stress. Thus, it is important to understand the 

actions of antioxidants on Cr(VI) induced pathology. 

 

2.3. Role of Cr(VI) on the aggravation of oxidative stress. 

 

     Similar to iron (Fe) and copper (Cu), Cr is also a redox-active metal. Thus, it can undergo 

redox cycling to produce a large amount of ROS in cells (25, 26, 29). Each step of Cr(VI) 

reduction involves the use of H2O2 to generates HO. via Fenton-like reactions (eq.1-3) (90, 100, 
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103–107). In the presence of Cr(VI), endogenous O2
·− anions and H2O2 also lead to the 

generation of HO. radical via Haber-Weiss reactions (eq.4) (90).  

Cr(VI) + H2O2 → HO· + Cr (V) + OH- (1) 

Cr(V) + H2O2 → HO· + Cr (IV) + OH- (2) 

Cr(IV) + H2O2 → HO· + Cr(III) + OH- (3) 

O2
.-+ H2O2 → O2 + HO· + HO-  (4) 

     Superoxide anion  (most importantly generated in mitochondria)  is also harmful as it reacts 

with nitric oxide (NO) to produce peroxynitrite (ONOO¯), a potent reactive nitrogen species 

(RNS) (108).  

2.4. Mechanisms of Cr(VI) mediated oxidative damage. 

     Several mechanisms are responsible for lipid and protein oxidation in Cr(VI) induced 

oxidative damages. 

(i) The H2O2 and HO. produced by Cr(VI)  during Fenton and Haber-Weiss reactions attack 

membrane lipids causing peroxidation and membrane injury (102, 109–111). 

(ii) The reduced intermediates of Cr(VI) bind to proteins, peptides, and amino acids to form 

protein carbonyls under the presence of  H2O2 (112). 

(iii) Cr(VI) causes both structural and functional alterations on the plasma membrane by 

altering the proportion of cholesterol and phospholipid by depletion of  GSH (113). 

(iv) Accumulation of Cr(III) intracellularly and extracellularly induces morphological 

alterations in the cell surface resulting in the disruption of lipid-protein structures of the plasma 

membranes that eventually cause loss of cellular integrity (91). 

     Studies have shown that Cr(VI) exposure to human erythrocytes causes an increment in 

plasma lipid peroxidation (114–116), protein oxidation, and the decrease in total sulfhydryl 

content, the activities of superoxide dismutase (SOD), glutathione S-transferase (GST), 

catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and thioredoxin 

reductase (TR) (117, 118). In a cell line study, GPX/GR activity shows a biphasic 

characteristic, that is, it increases at a later stage followed by an initial decrease as a 

consequence of de novo synthesis or reactivation of enzymes (119) after exposed to Cr(VI). 

Cr(VI) induced oxidative stress also exhibit organ-specific response on different antioxidant 

enzymes, which also depends on some factors such as chemical composition, days, and routes 

of treatment. But the increase in lipid peroxidation, glutathione depletion, and nuclear DNA 

damage are common in all tissues (120–125). 

 

2.5. Effects of Cr(VI) on Sirt-1, Pgc-1α, Nrf-2, HO-1, and NQO1 pathway. 

 

     The Sirt-1, Pgc-1α, Nrf-2, HO-1, and NQO1 molecules play an important role in oxidative 

stress-related signal transductions. Distortion of signals after Cr(VI) exposure causes oxidative 

damages (126). Silent information regulator 1 (Sirt-1), a NAD+-dependent deacetylase, which 

locates in the nucleus and cytoplasm, regulates the gene expression, energy metabolism, and 

oxidative stress response and also participates in the anti-inflammatory and antiapoptotic 

processes by deacetylase protein substrate in various signal transduction pathways (127–129). 

However, peroxisome proliferation-activated receptor-g coactivator 1α (Pgc-1α) is a 

transcription factor coactivator that controls several cellular metabolic pathways. It improves 

ROS defense system (130), fatty acid metabolism, and master regulator of mitochondrial 
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biogenesis and oxidative phosphorylation (OXPHOS) (131), by interacting with specific 

transcription factors (132,133). Sirt-1 increases the activity of cellular antioxidants by inducing 

expressions of SOD and GPx in cells via activating transcription of Pgc-1α (134, 135). Cr(VI) 

inhibits  Sirt-1 and Pgc-1α, and thus, it reduces the antioxidant capacity, causes disorder of 

mitochondrial dynamics and oxidative stress (126, 136). On the other hand, nuclear erythroid 

2-related factor-2 (Nrf-2) is a transcriptional regulator that induces the gene expression of the 

component of cellular antioxidants (glutathione and thioredoxin system) as well as helps in 

phase I and phase II cellular detoxification of substances (137, 138). Hence, it plays a crucial 

role against xenobiotics and oxidative stress (137). Nrf-2 also regulates the expression of two 

antioxidant proteins (139). First one is NADPH dehydrogenase quinone-1 (NQO1), which 

plays multiple roles in adapting cellular stress (140, 141) and another is heme oxygenase-1 

(HO-1), that stimulates cell proliferation/growth, and helps to maintain cellular homeostasis as 

well as upregulate the expression of antioxidant and antiapoptotic pathways (142–145). The 

deficiency of HO-1 in the cell causes DNA damage and carcinogenesis (146). Cr(VI) exposure 

suppresses Nrf-2, HO-1, and NQO1 expressions and leads the tissues vulnerable to oxidative 

damage. 

 

3. ROLE OF Cr(VI) ON DNA DAMAGE 

3.1. Cr(VI) induced DNA damage. 

     Cr(VI) is an inducer of DNA-crosslinks and  DNA strand breaks at pH-7.4 with genotoxicity 

and carcinogenicity (147).  The majority of these alterations are made by its reduced metabolite 

Cr (III). Cr(III) causes (i) oxidative DNA lesions such as strand breaks, (ii) formation of Cr-

DNA adducts, (iii) DNA-DNA interstrand cross-links, and (iv) DNA-protein cross-links (148). 

These Cr-DNA adducts are considered as the principal genetic lesions for replication inhibition, 

mutagenesis, and finally cell death (149). In this respect, we need to discuss the potential roles 

of antioxidants played in this process.  

3.2. Non-enzymatic antioxidants. 

3.2.1. Association of Cr(VI) related DNA damage with GSH. 

     GSH  is the most important antioxidant and also a prime metal chelator as its thiol (-SH) 

group has a high affinity to metals (150). The metal chelation activity of GSH seems diminished 

in the case of Cr(III). GSH can directly reduce Cr(VI) to form Cr (V), Cr (IV), and Cr(III) step 

by step by donating one electron at a time (95, 101). Cr(V) and Cr(III) are known to activate 

DNA damaging signals and break DNA double-strands (86). Initially, Cr(VI) reacts with 

glutathione to form Cr (V)-glutathione complex and glutathione thiyl radical (GS.) (eq.5) (105–

107, 151, 152). The Cr(V)-glutathione complex reacts with H2O2 to produce HO.  through a 

Fenton-type reaction, leading to DNA damage (105). 

Cr(VI) + GSH → Cr(V)-GSH complex + GS. (5) 

GS. further reacts with one molecule of GSH and produces di-sulfide radical (eq.6) (153) that  

reacts with molecular oxygen to generate O2
.−(eq.7) (154). 

GS. + GSH → GSSG.¯+ H+  (6) 

GSSG.¯ + O2 → GSSG + O2
.−  (7) 
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     The decomposition of Cr(V)-glutathione complex leads to the formation of Cr (IV) and thiyl 

radical (GS.), both of which continue to produce HO. and Cr(III) (Fenton type reaction). The 

interaction between DNA and Cr compounds is responsible for strand break (101, 155, 156), 

along with the catalytical production of HO. which has sufficient potential to cleave DNA (48, 

59, 83, 114). Guanine residues of DNA can react with HO. producing radical adducts such as 

8-hydroxy-deoxyguanosine (8-OH-dG), a conspicuous marker for oxidative damage in cancer 

(158, 159), which is significantly increased in the urine of chrome plating workers (160–164). 

The glutathione-Cr(III)-DNA cross-links are known to be the most abundant lesion, resulting 

in ternary Cr-DNA adducts (coordination of Cr(III) with DNA phosphates (phosphotriester-

type adduct)), accounting for about 80% in cultured cells which have proved as mutagenic in 

the human cells during replication (149, 165). The cellular concentration of GSH in the 

presence of Cr(VI) becomes very low due to the inhibitory effect of Cr(VI)  on GR (166, 167) 

or the consumption of GSH during Cr(VI) reduction. Wiegand et al.(168) have suggested that 

generally 3 molecules of GSH are needed to reduce 1 molecule of Cr(VI) and this process is 

accelerated in the presence of excessive GSH. This GSH  may be synthesized through the -

glutamyl cysteine pathway by breaking down the protein for the availability of its precursor 

amino acid cysteine (169). This is supported by the observation that Cr(VI) exposure increases 

GSH level up to 120% in rat liver (170) and kidney tissues following an initial decrease by 

accelerating protein breakdown for GSH biosynthesis (171). A dramatic increase in Cr(VI) 

induced DNA strand breaks is associated with an increase in GSH level in cells (172, 173) as 

GSH is responsible for the reduction of  Cr(VI) (174). Further studies show that GSH not only 

acts as a reductant of Cr(VI) but it also enhances the formation of Cr-DNA interstrand 

crosslink, which is the principal polymerase arresting lesion responsible for blocking DNA 

replication (94). Cr-DNA adducts formation simply depends on the production of Cr(VI) 

intermediates. On the other hand, DNA strand breakage is associated with the production of 

HO.; thus, the nature of DNA damage solely relates to the formation of reactive intermediates 

in the presence of GSH (107). 

3.2.2. Association of Cr(VI) mediated  DNA damage with Asc. 

     Asc is also an important Cr(VI) reductant that has been extensively studied. Suzuki and 

Fukuda (175) have shown that Asc is even more reactive with Cr(VI) than GSH. This is 

confirmed by Standeven and Watterhahn (173). They claim that Asc is the principal non-

enzymatic reductant of Cr(VI) in rat liver and kidney. Asc-dependent metabolism of Cr(VI)  

injuries nuclear DNA while sulfhydryls and NADPH-dependent Cr(VI)  metabolism has 

limited effect on DNA damage (176). Electronic paramagnetic resonance (EPR) study shows 

that the reaction of Asc with Cr(VI) produces ascorbate radical (Asc.−), carbon-di-oxide anion 

radical (CO2
.−) and other carbon-based radicals as produced by GSH (eq.8-10) (177–179) and 

also facilitates the binding of Cr(III) with un-cleaved DNA (180). 

                                          Cr(VI) + AscH- → Cr (V) + Asc.−      (8) 

Cr (V) + AscH- → Cr (IV) + Asc.− (9) 

Cr (IV) + AscH- → Cr(III) + Asc .− (10) 

According to Bielski, those Asc .−radicals react with each other to form a dimer that further 

reacts with H+ and converts again to ascorbate and dehydroascorbate (DHA) (Eq.11) (181) that 

then,  enters into the Cr(VI) reduction cycle again. 

AscH- + H+ → Asc + DHA  (11) 
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     EPR study also shows that Asc enhances Cr(III) complex by reduction of the long-lived 

intermediate Cr (V) complex. This indicates that Asc can reduce Cr(VI) directly to Cr(III) and 

increases DNA-protein crosslinks and produces cytotoxicity (182, 183). Actually, Cr(VI) and 

Asc can form Cr–DNA adducts by multi-coordinated binding of Cr(III) to DNA which is more 

resistant to dissociation by chelators (184, 185) resulting in the crosslinking of DNA-Cr-DNA 

by arresting the guanine specific area in mammalian DNA polymerases (94, 186). 

3.3. Antioxidant enzymes. 

3.3.1. Association of Cr(VI) mediated DNA damage with NADPH/NADH linked enzymes. 

     The main mechanisms of microsomal and cytosolic reductions of Cr(VI) associated with 

antioxidant enzymes (81) are exclusively NADPH-dependent along with the involvement of 

DT-diaphorase (87, 88, 187). DT-diaphorase (quinone oxidoreductase) can donate two 

electrons directly to form Cr(III) from Cr(VI) to avoid the formation of Cr (IV) and Cr (V) 

intermediates (81, 98). In the presence of NADPH, cytosolic Cr(VI) reduction involves a one-

electron transfer process that produces Cr(V) to form Cr(V)-NADPH complex using 

flavoenzyme GR (88, 103, 104). Cr(V) is responsible for DNA single-strand break and 

inhibition of GR activity while Cr(III) is responsible for DNA-protein crosslinks (182, 188). 

Inhibition of the activity of GR may be due to the loss of cytosolic NADPH (166). Reduction 

of Cr(VI) to Cr(III) requires the presence of both microsomal proteins as well as NADPH 

cofactor since Cr(VI) reduction was not observed at the presence of this cofactor with heat-

denatured microsomal protein (99). So, in the absence of these cofactors, chromate reduction 

does not occur, leading to no oxidation of other components of the microsomal system (88). 

The cytochrome P-450 electron-transport chain appears to be responsible for the microsomal 

Cr(VI)-reduction in the presence of NADPH (172). In the presence of NADPH, Cr(VI) can 

form stable Cr(V)-NADPH complexes such as glucose-6-phosphate (G6P)-Cr (V) complex 

(98). Incubation of Cr(VI) with microsomes and NADPH results in both single-stranded and 

double-stranded DNA binding; caused by the interaction between enzymatically generated Cr 

intermediates and DNA to produce polyoxyriboadenylic acid, polyribocytidylic acid, 

polyriboguanylic acid, and polyribouridylic acid (189). In the intracellular environment both 

Cr(VI) as well as Cr (V) complexes can interact with adenine and guanine of  DNA, resulting 

in oxidative damage which is ultimately transfigured to stable Cr(III)-deoxyadenosine (dA)-

DNA and Cr(III)–deoxyguanosine (dG)-DNA adducts in human cells to produce bulky DNA, 

i.e. less repairable and consequently induces mutations (190).  

3.3.2. Cr(VI) and Mitochondrial electron transport chain (ETC) enzymes on DNA 

damage. 

     Cr(VI) can be reduced by the enzymes of the mitochondrial ETC complex in the inner 

mitochondrial membrane (191) due to the fact that ETC complex I can donate two electrons to 

Cr(VI) (192). In the isolated submitochondrial particles (SMPs) of rat liver, under anaerobic 

condition, the Complex I and IV dependent-Cr(VI) reduction causes the formation of Cr(V) 

intermediate detectable by EPR spectroscopy and higher rate of oxygen depletion, whereas, 

complex II has less effect (191). A specific study on complex II of the respiratory chain 

indicates both succinate and glutamate serve as electron donors in this complex. Succinate in 

the presence of uncoupler (such as ADP) facilitates Cr(VI) reduction while glutamate-mediated 

reduction occurs only in the presence of respiratory-chain inhibitors thus, they exhibit different 

mechanisms on  Cr(VI) reductions for NAD-linked or FAD-linked substrates (193). Cr(VI) can 

also inhibit mitochondrial ETC complexes I and II by reaction with the thioredoxin 

system[thioredoxin (Trx)/peroxiredoxin (Prx)] to damage mitochondrial proteins. The 
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excessive Trx/Prx oxidation and thioredoxin reductase (TrxR) inhibition result in loss of 

mitochondrial membrane potential(192,194). Reduction of Trx’s by Cr(VI) may be due to the 

inhibition of TrxR that keeps the Trx’s in the reduced state, and the activity of TrxR cannot be 

reversed by the removal of residual Cr(VI) or by the addition of NADPH (electron donor for 

TrxR) (195). Thus, most of the endogenous antioxidant defense systems are suppressed or 

damaged after exposure to Cr(VI) accordingly in both time as well as dose-dependent manner. 

4. ADVERSE EFFECTS OF Cr IN HUMANS 

     Generally, human exposure to Cr(VI) is mainly via oral routes (drinking water and foods), 

inhalation (welding fumes), and dermal contacts (using products such as leather bags, shoes, 

stainless steel containers, cement, etc.). Bhattacharya et al. have reported that a saturated level 

of Cr(VI) is present in groundwater (in the form of CrO4
2-) and soil at the unregulated disposal 

site of pre-tanning industrial waste and chromite ore processing residue (COPR) (196). 1-3% 

of the general population is allergic to Cr compounds which are also known as a “contact 

allergen”. Cr-induced allergic dermatitis (such as hand eczema (197), foot dermatitis (198), 

hand dermatitis (199) result from direct contact with leather goods (200–202), cement (203), 

etc. Allergic reactions are triggered by Cr(VI) as well as Cr(III) at a very low concentration 

(204, 205). Groundwater contamination with Cr(VI) from tanneries causes dermatological, 

digestive, hematological abnormalities along with GI distress found in community areas (206). 

Singhal et al. have reported that 69.69% of workers in the sodium dichromate manufacturing 

industry and 56.22%  of workers in the chrome plating industry had a disorder of nasal mucous 

membrane and skin ulcer (207). Exposure to Cr can also cause kidney damage and produce 

low molecular weight (LMW) proteinuria and acute tubular necrosis (ATN) among the chrome 

platers and welders (208). 

5. MELATONIN: A POTENTIAL THERAPEUTIC MOLECULE FOR Cr EXPOSURE 

IN ORGANISMS 

     As mentioned above, Cr(VI) causes oxidative damages; however, the classic antioxidants 

including glutathione and vitamin C exhibit little protective effects while in most cases they 

may make the damage worse. It is challenging to find the unique antioxidants that can protect 

against Cr(VI) induced oxidative stress. Melatonin seems to be one of these unique 

antioxidants. Its unique properties to protect against Cr(VI) toxicities will be discussed below.  

5.1. Direct effects of melatonin on Cr(VI) induced oxidative stress. 

     Melatonin is a phylogenetically conserved molecule present in almost all organisms. Its 

primary function serves as a first line antioxidant (209–212). The antioxidant capacity of 

melatonin is more potent than that of classic antioxidants vitamin C, E, and GSH, etc. (209, 

213), and it minimizes both oxidative and nitrosative stress efficiently (214–216). Melatonin 

can directly scavenge the ROS or upregulate the expression of antioxidant enzymes via its 

membrane receptors or even its nuclear receptor activation (217). Several physiochemical 

mechanisms contribute to its high efficiency to interact with ROS (eq.12-14) (218): 

            Radical adduct formation: Melatonin + R· → melatonin-R·  (12) 

            Hydrogen atom transfer: Melatonin + R· → melatonin (-H)· + HR (13) 

            Single-electron transfer: Melatonin + R·→ melatonin·++ R--              (14) 
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     Different from the classic antioxidants, melatonin does not participate in the redox recycle 

reaction and, thus, is devoid of pro-oxidant activity (219). It can interact with a variety of ROS 

including singlet oxygen (1O2) (220–223), peroxyl radical (ROO·) (224–226), hypochlorous 

acid (HOCl) (227), HO· (51, 223, 228–230), H2O2, O2·- (223). Due to its amphiphilic nature, 

it can protect the membrane against lipophilic-oxy radicals, and also the hydrophilic radicals 

originated from the aqueous environment by locating between the polar head group of 

membrane phospholipid (231). Melatonin attenuates the chain reaction of lipid peroxidation 

(227, 232–235) to prevent the rigidity of phospholipid bilayer and acts as a mask against radical 

attack by blocking the site of membrane lipids (236, 237). It reduces the lipoperoxyl radical 

(LOO·) formation and stabilizes the cell membrane structure by directly neutralizing it (238) 

or by inhibiting the gene expression of lipoxygenase (239). It also reduces protein oxidation 

(224, 240) and protects the structure of the cell membrane damage caused by Cr(VI). 

     Apart from the radical scavenging activity, melatonin also upregulates the gene expression 

of several antioxidant enzymes such as GPx, GR, SOD, CAT, etc. (239, 241–243). Melatonin 

and its metabolite AMK also decrease the expression of nitric oxide synthases such as iNOS 

and mtNOS, thus reducing the level of NO and ONOO¯(244–248). In addition, melatonin is 

also a metal chelating agent (59). It can form di-, tri-, and tetradentate ligands with transition 

metal (59) to exert its metal detoxification activity. Due to this characteristic, melatonin can 

chelate up to 95% of metal ions (60). As a result, melatonin treatment relates to Cr and reduces 

the metal load on hepatic tissues (125). 

 

5.2. Receptor mediated effects of melatonin on Cr(VI) induced oxidative stress. 

 

     Some antioxidant activities of melatonin are mediated by its membrane receptors (MT1 and 

MT2). For example, binding to MT2, melatonin enhances the pathway of Sirt-1 and Pgc-1α, 

and partially activates signaling to mitochondria for their biogenesis (249). Sirt-1/Pgc-1α 

signaling pathway is important for maintaining the cellular antioxidant defense system (250), 

which upregulates the cellular and subcellular levels of antioxidant enzymes including SOD, 

GPx, CAT (251). In addition, melatonin induces the translocation of the Nrf2 transcription 

factor from the cytosol into the nucleus, therefore, it enhances gene expression of phase-2 

antioxidative enzymes including c-glutamylcysteine synthetase (c-GCS), heme oxygenase-1 

(HO-1), and NADPH: quinone dehydrogenase-1 (NQO1) (252) and suppresses the expression 

of proinflammatory NF-kB/COX-2 pathway (253). Thus, the decreased levels of Sirt-1, Pgc-

1α, Nrf-2, HO-1, and NQO1 proteins caused by Cr(VI) exposure can be attenuated by 

melatonin treatment (126). 

5.3. Mechanisms of melatonin on classic antioxidants potentiated Cr(VI) induced DNA 

damage. 

     The in-vitro study has shown that GSH can enhance metal-induced oxidative stress while 

melatonin administration reduces the damage with increased GSH level. The recovered GSH 

level is assumed by melatonin thermodynamically binding with GSH and making GSH be 

unavailable for metal chelation (254). Moreover, melatonin can increase the activity of rate-

limiting enzyme -glutamylcysteine synthase in the GSH synthesis pathway (239,255). 

     Asc, a well-known antioxidant, but in the presence of transition metals, it promotes 

peroxidation for the bio-molecules including  DNA (256). Thus, it is referred as a true 

paradoxical compound (257) and often used to potentiate oxidative stress in iron or copper 

system. Melatonin has been successfully used to protect against oxidative stress induced by 

both Fe2+/asc (258, 259) and Cu2+/asc (260, 261) systems. Thus, it can be assumed that 

melatonin can also protect the cells from Cr(VI), although it requires intense study. Melatonin 
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not only detoxifies oxygen-derived species but also scavenges other types of species including 

carbon-centered free radicals (234) produced as reaction intermediate during Cr(VI) reduction 

by Asc. Melatonin present in the nucleus not only protects forming  Cr(III)-DNA adduct but 

also reduces other DNA  oxidative damage (262, 263). For example, melatonin can reduce 

Cr(VI) induced DNA single-strand break up to 60-80% (264). 

 

5.4. Mechanisms of melatonin on antioxidative enzyme potentiated Cr(VI) induced DNA 

damage. 

 

     The concentrations of melatonin vary in subcellular compartments including cytosol, 

mitochondria, and nucleus (265–267). The highest melatonin level is detected in the 

mitochondria. Thus, melatonin effectively protects the mitochondrial membranes as well as 

mitochondrial DNA from ROS-mediated oxidative damage (268). Mitochondria are the 

powerhouse of ATP production. In the presence of Cr(VI), mitochondrial function is 

jeopardized with reduced activity of complex I and IV and ATP production. Mitochondrial 

dysfunction can cause an apoptotic signaling cascade which can be effectively shielded by 

melatonin (269). Melatonin increases ATP production by increasing the activity of ETC (265, 

269, 270), restricting the mitochondrial membrane permeability pores to increase 

mitochondrial membrane potential. Castroviejo et al. have reported that melatonin as well as 

AMK increases the activities of Complex I and IV and preserves their normal conditions under 

oxidative stress (244,  270). As a result, it may also protect against Cr(VI) induced damages to 

the mitochondria(271).  

 

6. EFFECTIVE CONCENTRATIONS OF MELATONIN USED FOR TOXIC 

METALS. 

 

     Melatonin has been widely used to detoxify the variable toxic metals including Cr. For 

comparable purposes, its effective concentrations on different metals have been summarized 

in Table 3. 

7. CONCLUSION 

 

     Being a transition metal, Cr particularly Cr(VI) induces oxidative stress and DNA damage 

by producing HO. or by formatting Cr-DNA adducts and DNA strands breaking (single and 

double-strand breaking). Cr(VI) is classified as a carcinogen due to its ability of causing gene 

mutations and tumors. Melatonin, a low molecular weight molecule synthesized by 

mitochondria, is a potent antioxidant. It is an environment friendly molecule with no obvious 

toxicity to organisms. It is also available from foodstuff with the reported high levels in cereals 

(rice, wheat), green vegetables, fruits, and beverages (wine, beer, orange juice) that humans 

consume almost regularly. Melatonin exerts its protective effects on Cr(VI) induced oxidative 

stress and DNA damage via multiple mechanisms: (i) it chelates Cr(VI) and Cr (III), (ii) it 

scavenges free radicals, (iii) it reduces the Cr(VI) induced protein breakdown and generates 

GSH by increasing -glutamylcysteinesynthase (γ-GCS) activity, and (iv) it increases the 

mitochondrial ETC activity thereby protecting against the Cr(VI) induced mitochondrial 

damage. The protective mechanisms of melatonin against Cr(VI) induced oxidative stress have 

been summarized in figure 1. Thus, we speculate that melatonin can serve as an important 

future therapeutic molecule or as an important nutraceutical in the amelioration of Cr(VI) 

induced oxidative damage in organisms. 
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Table 3. The effective doses of melatonin on metal-induced oxidative damage. 

i.p: Intraperitoneal injection, s.c: Subcutaneous injection. 

Metals 

Periods  

of 

exposure 

Dose of metals Tissues/cells 
Doses of 

melatonin 

Time of 

treatment 
Route  Ref. 

Cr 

(K2Cr2O7) 
- 0.5mM 

Cultured 

hepatocytes of rats  
1mM 10 hours - (264) 

- 

15, 30 

and 60 

days 

20mg/kg/day (oral) 
hepatic tissues of 

rats 
10mg/kg/day 

15, 30 

and 60 

days 

i.p (125) 

(K2Cr2O7) 35 days 4mg/kg/day (i.p.) 
cardiac tissues of 

rats 
20mg/kg/day 35 days s.c (272) 

Cd) 

CdCl2 
28 days 5mg/kg/day (oral) brain tissues of rats 10mg/kg/day 28 days s.c (273) 

(CdCl2) 22 days 5mg/kg/day (s.c.) 
hepatic tissues of 

rats 
10mg/kg/day 22 days s.c (274) 

CdCl2 14 days 5mg/kg/day (i.p.) 
Ovaries of female 

CD-1 mice 
25mg/kg/day 14 days i.p (275) 

CdCl2 15 days 

0.44mg/kg in 

alternative days 

(s.c.) 

hepatic, cardiac and 

renal tissues of rats 

10mg/kg/ in 

alternative days 
15 days 

Oral 

gavage 
(254) 

Iron (Fe) 

(in the form 

of 

adriamycin) 

1 day 
10mg/kg. in 

alternativedays (i.p.) 

hepatic, and cardiac 

tissues of rats 

15mg/kg/day 

(prior and after 

adriamycin 

treatment 

10 days i.p (276) 

Fe(OH)3 28 days 
50mg/kg/3 

doses/week (i.p.) 

hepatic, and renal 

tissues of rats 
10mg/kg/day 28 days i.p (277) 

CuCl2 

- 1mM 

hepatic tissues of 

rats 

 

5mM - - 

(278) 

14 days 2mg/kg/day (i.p.) 

hepatic tissues of 

rats 

 

12mg/kg/day 14 days i.p 

HgCl2 

 
1 day 5mg/kg/day (i.p.) 

renal, hepatic, lung 

and brain tissues of 

rats  

10mg/kg/day 1 day i.p (279) 

(HgCl2) 60 days 
2 and 4 mg/kg/day 

(oral) 

Thyroid glands of 

rats 
5mg/kg/day 60 days i.p) (280) 

(HgCl2) 3 hours 1, 10, 100µM 
sperms of male 

Wistar rats (in vitro) 
100µM 3 hours - (281) 

(HgCl2) 30 days 0.5mg/kg/day (oral) 
cardiac tissues of 

rats  
4µg/ml/day 30 days 

Drinkin

g water 
(282) 

(HgCl2) 60 days 
2 and 4mg/kg/day 

(oral) 

hepatic tissues of 

rats 
5mg/ml/day 60 days i.p (283) 

(HgCl2) 60 days 
2 and 4mg/kg/day 

(gavage) 
brains of rats 5mg/ml/day 60 days i.p (284) 

 (NaAsO2) 30 days 
5mg/kg/day 

(gavage) 
testes of rats 25mg/kg/day 30 days i.p (285) 

(NaAsO2) 90 days 10mg/kg./day renal tissues of rats 25mg/kg/day 

Post 14 

days treat 

 

i.p (286) 

(NaAsO2) 30 days 7mg/kg/day (oral) renal tissues of mice 250µg/kg/day 30 days s.c (287) 

(NaAsO2) 56 days 
7mg/kg/day 

(gavage) 
brains of rats 25mg/kg/ day 24 days N/A (288) 

(NaAsO2) 30 days 5.55mg/kg/day(i.p.) 
hepatic and renal 

tissues of rats 
10mg/kg/day  5 days i.p (289) 

(NaAsO2) 30 days 5.55mg/kg/day(i.p.) 
hepatic and renal 

tissues of rats 
10mg/kg/day  5 days i.p (290) 

Lead (Pb) 10 days 
10, 15 and 

20mg/kg/day (i.p.) 

brains and bones of 

rats 
10mg/kg/day 10 days i.p (291) 

Pb 7 days 15mg/kg/day (i.p.) 
stomach, duodenum 

and spleen of rats 
10mg/kg//day 7 days 

Oral 

Gavage 
(292) 

 (AlCl3) 7 days 34mg/kg/day (oral) brains of rats 10mg/kg/day 7 days i.p (293) 

(AlCl3) 120 days 50mg/kg/day (oral) brains of rats 10mg/kg/day 120 days i.p (294) 
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Fig.1. Protective mechanism of melatonin against Cr(VI) induced oxidative stress- and 

DNA damage. 

     (SSR)- Single-Strand Breaks, (DSR)- Double-Strand Breaks, (Cr)- Chromium, (GSH)- 

reduced glutathione, (GS.)- glutathione thiyl radical, (Asc)- ascorbate,(Asc._)- ascorbate 

radical, (𝐶𝑂2
.−)  -carbon radical, (8-OH-dG)- 8-hydroxy-deoxyguanosine, (HO.)- hydroxyl 

radical, (𝑂2
·−) - superoxide radical, (GR)- glutathione reductase, (GPx)- glutathione 

peroxidase, (GST)- glutathione-S- transferase, (SOD)- superoxide dismutase, (CAT)- catalase. 
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